× NO BLOQUEES a Universo Formulas

¡Hola! Al parecer tienes en el navegador un bloqueador de anuncios (Adblocker, Ablock Plus,...) que impide que se visualicen nuestros anuncios.

Queremos recordarte que este proyecto vive únicamente de la publicidad y que sin estos ingresos no podremos seguir ayudándote.

No te pedimos que desinstales tu bloqueador de anuncios, sólo que no actúe en las páginas de nuestro dominio universoformulas.com y así podremos mostrarte nuestros bloques de anuncios.

Icono de AdBlock Icono de AdBlock Plus Icono de UBlock Icono de AdBlock Pro Icono de Fair AdBlock Icono de Adguard AdBlock

¡Gracias por todo y que sigas disfrutando de Universo Formulas!

Este aviso se cerrará automáticamente en 30 segundos.

Función polinómica

ANUNCIOS
1 estrella2 estrellas3 estrellas4 estrellas5 estrellas (32 votos, promedio: 4,13 de 5)
Cargando…

Una función polinómica f es una función cuya expresión es un polinomio tal como:

Expresión de una función polinómica.
Dibujo de una función polinómica.

El dominio de las funciones polinómicas son todos los números reales.

Las funciones polinómicas son continuas en todo su dominio.

Se llama grado de una función polinómica al mayor exponente de sus términos. Por ejemplo, el polinomio de la función del gráfico de arriba es de grado 3.

Los diferentes ai (a0, a1, …an), son números reales llamados coeficientes de un polinomio.

Tipos de funciones polinómicas

ANUNCIOS


Las funciones polinómicas pueden clasificarse en diferentes tipos según el grado del polinomio:

  • Funciones constantes: son funciones polinómicas de grado 0 (pues 0 es el coeficiente de x). No dependen de la variable independiente x:
    Expresión de una función constante.

    Su representación gráfica es una recta paralela al eje de abscisas.

  • Funciones polinómicas de primer grado o de grado 1: son funciones que están compuestas por un escalar que multiplica a la variable independiente más una constante. Su mayor exponente es x elevado a 1.
    Expresión de una función polinómica de primer grado.
    Dibujo de una función polinómica de primer grado.

    Su representación gráfica es una recta de pendiente m.

    La m es la pendiente y la n la ordenada, o punto en donde corta la recta f al eje de ordenadas. Según los valores de m y n existen tres tipos:

    • Funciones afines: son funciones de primer grado que no pasan por el origen, es decir, la ordenada no es nula (n ≠ 0):
      Expresión de una función afín.
    • Funciones lineales: son funciones polinómicas de grado 1 tales que la ordenada es nula (n = 0), de manera que:
      Expresión de una función lineal.
    • Funciones identidad: es un caso particular de funciones lineales, tal que a cada elemento x le hace corresponder éste mismo valor en f(x). Es decir, m = 1 y n = 0.
      Expresión de una función identidad.
  • Funciones cuadráticas: son funciones polinómicas de grado 2, es decir, su mayor exponente es x elevado a 2 (x2):
    Expresión de una función cuadrática.
    Dibujo de una función polinómica cuadrática.

    Su representación gráfica es una parábola vertical.

  • Funciones cúbicas: son funciones polinómicas de grado 3. Por lo tanto, su mayor exponente es x elevado a 3 (x3):
    Expresión de una función cúbica.
    Dibujo de una función polinómica cúbica.

Propiedades de las funciones polinómicas

Sean f(x) y g(x) dos funciones polinómicas, entonces:

  • La gráfica de una función polinómica corta al eje Y en (0,a0).
  • Corta al eje X un número de veces igual o inferior al grado del polinomio n.
  • El número de máximos y mínimos relativos link de una función polinómica es, como mucho, el grado del polinomio menos 1 (n – 1).
  • En las funciones polinómicas no existen asíntotas.
  • El número de puntos de inflexión es igual o menor a n – 2.
  • Si el grado de todos los términos fuese impar, la gráfica sería simétrica respecto al origen de coordenada. Pero si todos los términos tuviesen grado par, la gráfica sería simétrica respecto al eje OY.
  • En la gráfica de una función polinómica, la rama de la derecha será creciente cuando el coeficiente del término de mayor grado, an, sea positivo. Y esa rama será decreciente cuando an sea negativo.
  • En la gráfica, la rama de la izquierda será decreciente cuando se cumpla que el grado del polinomio n sea par y el coeficiente del término de mayor grado, an, sea negativo. También será decreciente la rama izquierda cuando n sea impar y, al mismo tiempo, an sea positivo. En el resto de los casos, la rama izquierda será siempre creciente (irá creciendo hacia arriba).
  • La suma de dos funciones polinómicas es una función polinómica. Es decir:
    f(x)+g(x) es polinómica
    Ejemplo de que la suma de funciones polinómicas es una función polinómica.
  • El producto de dos funciones polinómicas es una función polinómica. Es decir:
    f(x) · g(x) es polinómica
    Ejemplo de que el producto de funciones polinómicas es una función polinómica.
  • El producto de un escalar a y una función polinómica es una función polinómica. Es decir:
    a · g(x) es polinómica
    Ejemplo de que el producto de un escalar y una función polinómica es una función polinómica.
  • La composición de dos funciones polinómicas es una función polinómica. Por tanto:
    f o g(x) es polinómica
    Ejemplo de que la composición de funciones polinómicas es una función polinómica.

SI TE HA GUSTADO, ¡COMPÁRTELO!

También te podría gustar...

9 Respuestas

  1. me lo mamas dice:

    NO ENTIENDO MALDITA SEAAA AAAAAAAAAAA

  2. Ana dice:

    Me parece interesante, difícil y fácil. Muchas Gracias por la información

  3. Sue dice:

    Cuentan con 3 ejemplos claros de la función polinomica…?

  4. Luis carlos dice:

    excelente información

  5. Andy dice:

    Por fa ayudenmen con 5 ejercios de funcion polinomica

  6. cristrina lopez solis dice:

    muchas gracias por esta infotmation

  7. SIDRONIO ANAYA ALVAREZ dice:

    me pare muy interesante y muchas gracias, tendre mas contacto co ustedes

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *