× NO BLOQUEES a Universo Formulas

¡Hola! Al parecer tienes en el navegador un bloqueador de anuncios (Adblocker, Ablock Plus,...) que impide que se visualicen nuestros anuncios.

Queremos recordarte que este proyecto vive únicamente de la publicidad y que sin estos ingresos no podremos seguir ayudándote.

No te pedimos que desinstales tu bloqueador de anuncios, sólo que no actúe en las páginas de nuestro dominio universoformulas.com y así podremos mostrarte nuestros bloques de anuncios.

Icono de AdBlock Icono de AdBlock Plus Icono de UBlock Icono de AdBlock Pro Icono de Fair AdBlock Icono de Adguard AdBlock

¡Gracias por todo y que sigas disfrutando de Universo Formulas!

Este aviso se cerrará automáticamente en 30 segundos.

Función sobreyectiva

ANUNCIOS
1 estrella2 estrellas3 estrellas4 estrellas5 estrellas (49 votos, promedio: 3,96 de 5)
Cargando…

Una función sobreyectiva (o suprayectiva) f es una función tal que todos los elementos del conjunto final Y tienen al menos un elemento del conjunto inicial X al que le corresponde.

Dibujo de una función sobreyectiva.

Es decir, una función es sobreyectiva si el recorrido de la función es el conjunto final Y. Dicho de otra manera, una función es suprayectiva cuando son iguales su codominio y su recorrido o rango.

En términos matemáticos, f es suprayectiva si:

Fórmula de la condición de una función suprayectiva

Ejercicio 1

ANUNCIOS


Sea la función en los números reales definida por f(x) = x+1.

Gráfica de la función sobreyectiva f(x)=x+1

Esta función sí que es sobreyectiva. Vamos a verlo demostrando que el recorrido de la función son todos los números reales.

Demostración de que la función f(x)=x+1 es suprayectiva.

El recorrido de la función es el mismo que el conjunto final Y, por lo que la f es suprayectiva.

Es decir, que, con la función f(x), todo número real será imagen de, como mínimo, otro número real (en el caso de esta función, imagen de un único número real).

Igualmente, con los mismos argumentos, será sobreyectiva la función definida sobre los reales:

Gráfica del ejemplo 2

En esta función, todos los elementos del conjunto imagen (que aquí coincide con el codominio), tienen al menos un elemento del conjunto inicial, pudiendo tener dos o tres elementos del conjunto imagen un mismo elemento del conjunto inicial.

Ejercicio 2

Ahora supongamos que tenemos la función f(x) = x2-1, siendo el conjunto inicial X y el final Y los números reales. Comprobar si es sobreyectiva.

Vamos a comprobar si el recorrido de la función coincide con el codominio, que se ha definido sobre los reales.

Como todos los números reales elevados al cuadrado dan un número positivo, la función nunca puede ser menor de -1, que es cuando x es 0.

El recorrido de la función es [-1, ∞>).

Gráfica de la función no suprayectiva f(x)=x^2+1

El recorrido de la función son los números reales mayores o iguales que -1, por lo que no coincide con el conjunto final Y. La f no es suprayectiva.

Podría convertirse esta función en sobreyectiva asignándole un dominio Dom [-1, ∞,) para que coicidiese con el rango.

SI TE HA GUSTADO, ¡COMPÁRTELO!

También te podría gustar...

20 Respuestas

  1. royner dice:

    prodrian poner las caracteristicas de la funcion sobreyectiva

    • Respuestas dice:

      Las que se indican en esta página.
      todos los elementos del conjunto final Y tienen al menos un elemento del conjunto inicial X
      una función es suprayectiva cuando son iguales su codominio y su recorrido o rango.

  2. Jennifer vargas dice:

    Hola alguien seria tan amable de ayudarme como deducir la definición de la función sobreyectiva se los agradeceré mucho

    • Respuestas dice:

      Una función f es sobreyectiva (o suprayectiva) si todos los elementos del conjunto final Y tienen al menos un elemento del conjunto inicial X al que le corresponde.
      Una función es sobreyectiva cuando son iguales su codominio y su recorrido o rango (no hay elementos del conjunto final que no sean imagen del conjunto X)

  3. Victoria dice:

    Me gustó mucho los programas que me está ofreciendo esta pagina web me sirvió muchísimo de los agradezco muuuuccccchhhhhhiiiiiiiissssssiiiiiiimmmmmmooooooo

  4. Diego Alejeandro Vélez Wedderburn dice:

    Una función sobreyectiva cuando son iguales su codominio y su dominio

  5. CesarJH dice:

    Mi pregunta es que, si hay un elemento del dominio que no tiene imagen mientras que todos los elementos del conjunto de llegada son imagen del resto de elementos del dominio, es función Sobreyectiva?.
    Es necesario que sea función antes de ser sobreyectiva, me podrían dar un ejemplo por favor

  6. Miguel dice:

    Tengo 2 dudas.
    a) Si x^2 – 1 no es inyectiva ni sobreyectiva (y por lo tanto no es biyectiva) ¿Entonces qué sí es?
    b) Si se define el conjunto contradominio como y E R | y >= -1 (Para toda y que pertenece a los Reales tales que y sea mayor o igual a menos uno) entonces f(x) = y = x^2 – 1 sí es suprayectiva, ¿Correcto? ¿Entendí bien?

    • Respuestas dice:

      a)Esta función, tal y como está definida no es biyectiva (no inyectiva, no 1 – 1, prueba de recta horizontal, ni sobreyectiva, porque no coinciden dominio y contradominio).
      b)Si restringes el contradominio como indicas, continua sin cumplir el criterio de inyectividad (no 1 – 1). En todo caso, deberías restringir el dominio, por ejemplo a los reales positivos iguales o mayores que 1,62.

  7. ?????????? dice:

    La verdad no me ayudo para nada dicen 3 ejemplos y solo dan uno dr slbreyectiva y el otro es de no sobreyectiva entonces sean serios

    • Respuestas dice:

      Los ejemplos dados son dos.
      En el primero, aparecen dos ejemplos de función sobreyectiva
      En el segundo ejemplo se muestra una función, que no cumple las condiciones para que sea una función sobreyectiva.
      Se hace didácticamente para su contraste y comprensión.
      Gracias por tu participación.

  8. Esteban Solis dice:

    gracias me ayudo mucho en mi clase :v

  9. paola dice:

    me ayudo en todo lo q estaba buscando , gracias…

  10. Emmanuel Duran dice:

    lo que tienen de que le pertenece por lo menos un elemento en x se contradice con lo dicho en el articulo de funcion biyectiva y lo cito textualmente “Es decir, si todo elemento del conjunto final Y tiene un único elemento del conjunto inicial X al que le corresponde (condición de función sobreyectiva) y…..”

  11. SAMUEL DAVID VELEZ PADILLA dice:

    no me ayudó en nada

  12. johander dice:

    son muy buenos los puntos dados sobre este tema

  13. Edreizurit dice:

    Grax….:)

  14. YANNELLY AGUIRRE dice:

    EXCELENTE, GRACIAS

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *