El movimiento parabólico es el movimiento de una partícula o cuerpo rígido describiendo su trayectoria una parábola. Por ejemplo, el balón de fútbol cuando es chutado por un jugador y cae al suelo es un movimiento parabólico.
El movimiento parabólico se puede analizar como la unión de dos movimientos. Por un lado, la trayectoria en la proyección del eje de las x (el eje que va paralelo al suelo) describirá un movimiento rectilíneo uniforme. Por otro lado, la trayectoria de la partícula al elevarse o caer verticalmente (en proyección sobre el eje de las y) describirá un movimiento rectilíneo uniformemente variado, donde la aceleración es la gravedad.

Nota: la gravedad normalmente se considera g = 9.81 m/s2.
Para hacernos una idea visual de los dos componentes del movimiento parabólico, imaginemos un lanzamiento de peso de atletismo.
Si pudiésemos seguir el recorrido de la bola verticalmente desde arriba, en el mismo plano vertical de la trayectoria, desde esa posición privilegiada veríamos la bola avanzar a una velocidad constante, desde la salida de la mano del atleta hasta que la bola toca el césped. Apreciaríamos un movimiento rectilíneo uniforme (velocidad constante).
Pero si nos pudiésemos situar sobre el césped, detrás de donde se ubican los jueces y que estuviésemos también justo en el plano vertical de la trayectoria (es decir, que lanzase hacia nosotros) nos daría la impresión de que la bola sube y baja como si se tratase de un lanzamiento vertical hacia arriba (movimiento rectilíneo uniformemente variado).
Una de las aplicaciones más importantes del movimiento parabólico es la balística. La balística es la ciencia que estudia la trayectoria de las balas o proyectiles. Ciertos proyectiles son lanzados desde un cañón con un ángulo determinado calculado para que el proyectil recorra una parábola e impacte en el objetivo esperado.
(Nota: estudiamos aquí el movimiento parabólico aplicado a la balística desde un punto de vista teórico. En la práctica, la balística debe de corregir los cálculos en función de otros factores, como el rozamiento del proyectil con la atmósfera, el viento, la presión atmosférica, la esfericidad y la rotación de la Tierra, etc.).
Tipos de movimiento parabólico
Existen diferentes tipos de movimiento parabólico dependiendo desde donde empieza o acaba el movimiento del cuerpo. Por ejemplo:
- Movimiento parabólico completo: el cuerpo recorre una parábola completa, empezando y acabando en el suelo.
- Movimiento de media parábola (o tiro parabólico horizontal): el cuerpo empieza el movimiento desde cierta altura y es lanzado parabólicamente con una fuerza horizontal, en un punto que sería el punto más alto de la parábola completa ideal.
- Otros movimientos parabólicos: existen muchos casos particulares del movimiento parabólico, por ejemplo el lanzamiento de una pelota desde el suelo a la terraza de una casa o el lanzamiento a canasta de un jugador de baloncesto. Siempre son tramos de una teórica parábola completa.
Todos los elementos de los movimientos parabólicos se pueden calcular a partir del movimiento parabólico completo.

Velocidad
La velocidad inicial del cuerpo (v0) tiene dos componentes, la componente horizontal, en el eje X y la componente vertical, en el eje vertical Y.
El vector v0 de la velocidad inicial es la suma de los dos vectores componentes:

La componente horizontal de la velocidad vx es constante en toda la trayectoria, ya que es un movimiento rectilíneo uniforme. La componente vertical de la velocidad vy disminuye inicialmente por la gravedad, hasta hacerse nula en el punto más alto de la trayectoria. A partir de ese punto, vuelve a crecer uniformemente acelerada por la gravedad. La fórmula de la velocidad en cualquier punto de la trayectoria es:

Y trascurrido un tiempo t, la velocidad y sus componentes son:

Si se saben las componentes vertical (MRUV) y horizontal (MRU) de la velocidad, el valor de la velocidad en cualquier punto se obtiene por el teorema de Pitágoras:

En ese punto de la trayectoria, cuando ha trascurrido un tiempo t, el ángulo del móvil es el del vector resultante de la velocidad en ese momento:

Aceleración
La aceleración solamente está presente en la componente vertical. El movimiento horizontal es uniforme mientras que sobre la componente y influye la aceleración de la gravedad, que hace que se frene el cuerpo (en el caso de que esté subiendo) hasta volver a acelerarse al descender y caer al suelo.

Posición
En la posición del objeto intervienen las fórmulas de la posición del movimiento rectilíneo uniforme (sentido horizontal) y la posición del movimiento rectilíneo uniformemente variado (sentido vertical).

El primer sumando se corresponde con la proyección horizontal y se debe al MRU mientras que el segundo sumando es la proyección vertical de la posición, y se debe al MRUV.
Siendo (x0, y0) las coordenadas de la posición inicial, θ el ángulo de salida, g la aceleración de la gravedad y t el tiempo transcurrido en un tramo de la trayectoria.

Tiempo de vuelo
Llamamos tiempo de vuelo (Tvuelo) al que invierte el cuerpo o el proyectil en realizar un movimiento parabólico completo hasta llegar a tierra, es decir a la misma altura del punto de salida.

(Para deducir esta fórmula partiremos del sumando de la fórmula [3] que se corresponde con la componente vertical de la trayectoria. Como, al final del movimiento, se vuelve al nivel de salida, y se iguala a cero. Se despeja el tiempo t).

Alcance horizontal máximo
La partícula o cuerpo llegará a su alcance horizontal máximo cuando caiga al suelo, es decir, cuando la altura y vuelva a ser cero. Podemos calcular el alcance sin saber el tiempo que ha tardado en recorrer la parábola la partícula o conociéndolo.
- Fórmula del alcance siendo el tiempo de trayectoria de la partícula desconocido
Siendo (x0, y0), la posición inicial, θ el ángulo de salida y g la aceleración de la gravedad.
(Para deducir esta fórmula se reemplaza en la componente horizontal de la ecuación de la posición [3], la expresión [4] que representa el tiempo de vuelo de la parábola completa).
Y, por las razones trigonométricas del ángulo doble, (en este caso, el seno del ángulo doble).
El alcance máximo que se podrá lograr con un proyectil (a igual velocidad inicial v0), será con un ángulo θ = 45°.
Por ejemplo, se obtendrá el mismo alcance horizontal para ángulos de lanzamiento θ = 45° ± m. El proyectil tendrá el mismo alcance, tanto si se lanza con ángulos θ = 45° ± 15°, es decir θ = 30° y θ = 60°, ya que sen (2 · 30°) = sen (2 · 60°). Idénticos alcances se obtendrán con ángulos θ = 45° ± 30°, es decir θ = 15° y θ = 75°, puesto que sen (2 · 15°) = sen (2 · 75°). Y es que en la fórmula interviene sen (2θ) y el seno de dos ángulos suplementarios es el mismo. Y son suplementarios 2(45° + m) = 90° + 2m y 2(45° – m) = 90° – 2m. Pero, insistimos, el alcance máximo se logra con θ = 45°.
La razón es que el valor del seno máximo es 1, que se corresponde con el seno de 90°. Para que el alcance sea máximo, 2θ tiene que ser de 90°, por lo que el ángulo del alcance máximo se logra con θ = 45°.
Altura máxima
En un teórico movimiento parabólico completo, existe un punto donde la partícula se encuentra en el punto más alto de su trayectoria.
En ese punto, la componente vertical de la velocidad es nula.
La fórmula para determinar la altura máxima no depende del tiempo.

(Para deducir esta fórmula, la componente vertical de la velocidad en el punto más alto es nula. La igualamos a 0 en la ecuación [2] y despejamos el tiempo).

Se comprueba que el tiempo en alcanzar el punto máximo es la mitad del empleado en la parábola completa. Ecuación [4].
Se sustituye este tiempo en la expresión de la componente vertical de la posición. Ecuación [3].

A igual velocidad inicial y aceleración de la gravedad, la altura máxima de una trayectoria parabólica dependerá del ángulo θ de la velocidad inicial v0.
La máxima altura que se puede alcanzar con una velocidad v0 determinada se corresponde con un ángulo de lanzamiento θ = 90°.
Es un tiro vertical hacia arriba.
Relación entre el alcance máximo y la altura máxima

Esta relación se deduce así:

Y por la razón trigonométrica del seno del ángulo doble:

Por lo tanto, si en un ángulo de máximo alcance de θ = 45° cuya tangente es 1, el proyectil llega a 100 m, habrá alcanzado una altura máxima de ¼ · 100, es decir, 25 m.
Tiro parabólico horizontal
El tiro parabólico horizontal (o lanzamiento horizontal o movimiento semiparabólico) es el movimiento parabólico que se inicia a una altura sobre el punto de caída y en el que la velocidad inicial es horizontal:

El movimiento parabólico completo es una trayectoria simétrica (la altura de salida y la de caída es la misma. La altura máxima está en la mitad). El tiro parabólico horizontal o semiparabólico se inicia en el punto medio del tiro parabólico completo. Su alcance máximo y tiempo de vuelo son la mitad del alcance y tiempo del completo:

Las ecuaciones del tiro parabólico horizontal son:

Donde:
- vx es la componente horizontal de la velocidad, de magnitud constante, (o aquí, también v0, pues coincide con la velocidad inicial de lanzamiento horizontal).
- vfy: componente vertical de la velocidad final, la de llegada.
- g: aceleración de la gravedad. (9,81 m/s²).
- tvuelo: tiempo de vuelo en la media parábola.
- h: altura de lanzamiento sobre el punto final de llegada.
- xsmáx: alcance máximo en el tiro horizontal.
- θ: ángulo de llegada.
La ecuación que relaciona las coordenadas en cualquier punto i del movimiento es:

Ecuación alternativa de la trayectoria en el movimiento parabólico
De las ecuaciones anteriores y despejando t se deduce:

Esta ecuación se corresponde con la ecuación canónica u ordinaria de la parábola, vertical y abierta hacia abajo (signo menos en el coeficiente del término en x²).
Ejercicios resueltos del movimiento parabólico
Ejercicio 1
Un portero saca el balón desde el césped a una velocidad de 26 m/s. Si la pelota sale del suelo con un ángulo de 40° y cae sobre el campo sin que antes lo toque ningún jugador, calcular:
- Altura máxima del balón
- Distancia desde el portero hasta el punto donde caerá en el campo
- Tiempo en que la pelota estará en el aire
SOLUCIÓN:
Resolveremos el problema de dos maneras: aplicando directamente las fórmulas específicas o, en segundo lugar, partiendo de las ecuaciones de los dos movimientos, MRU y MRUV.
En primer lugar, descomponemos la velocidad inicial en sus componentes. La componente horizontal de la velocidad será:

La componente vertical de la velocidad inicial será:

La altura máxima será:

El alcance del saque del portero será:

Calcularemos el tiempo de vuelo de la pelota:

Ahora vamos a resolver el mismo problema, pero partiendo de las fórmulas de los dos movimientos componentes del movimiento parabólico: el movimiento rectilíneo uniforme (MRU), que se corresponde con el eje horizontal, y el movimiento rectilíneo uniformemente variado (MRUV), que se corresponde con el eje vertical. Recordemos que la aceleración aquí es la aceleración de la gravedad g, con valor -9,81 m/s2 (signo negativo por ser el sentido de la gravedad contrario al de la componente vertical de la velocidad inicial v0y).
En el punto en que el balón alcanza la altura máxima, su componente de velocidad vertical será vy = 0 m/s, ya que deja de subir y empieza a descender. Aplicamos la fórmula de la velocidad en el movimiento rectilíneo uniformemente variado (MRUV). En este caso será:

Como vy = 0:

Tiempo que tarda en llegar el balón a su punto más alto. Ahora aplicamos la ecuación del espacio en el MRUV, para averiguar la altura máxima, sabiendo el tiempo que ha invertido en llegar a ella:

Nos queda saber el alcance. Como el movimiento parabólico es simétrico, tardará lo mismo en llegar al punto más alto que luego, desde allí, bajando llegar a tocar el césped, es decir 1,7 · 2 = 3,4 s.
Aplicamos la fórmula del espacio del MRU, por más sencilla, que en este caso será:

Nota: la diferencia en los decimales en el resultado de los dos procedimientos se debe al redondeo.
Ejercicio 2
Están jugando en el patio de un colegio, cuando el balón sale al exterior por encima de la valla del campo. Un hombre le da una patada al balón para devolverlo al interior. Sabiendo que el muro del patio tiene 3 m de altura, que el hombre está a 53 m del muro y que patea el balón a 24 m/s con un ángulo de 55°, averiguar si consigue que la pelota vuelva a entrar al patio o, por el contrario pasa sobre el muro.
SOLUCIÓN:
En este problema, emplearemos también fórmulas de los dos movimientos componentes del movimiento parabólico: el movimiento rectilíneo uniforme (MRU), que se corresponde con el eje horizontal, y el movimiento rectilíneo uniformemente variado (MRUV), que se corresponde con el eje vertical.
En primer lugar, volvemos a descomponer el vector velocidad inicial v0 en sus dos componentes. La componente horizontal de la velocidad será:

La componente vertical de la velocidad inicial será:

Resolveremos el problema aplicando las ecuaciones de los dos movimientos, MRU y MRUV. Como el hombre chuta el balón a 53 m del muro y la componente horizontal de la velocidad es 13,77 m/s, por la ecuación del MRU tendremos:

Que será el tiempo en llegar al balón al muro, ya que éste está a 53 m. Ahora, para ver si lo sobrepasa, aplicamos una fórmula del MRUV:

Recordamos que la aceleración es la de la gravedad g, con signo contrario al de la componente vertical de la velocidad inicial.
La respuesta al ejercicio es que el hombre no ha conseguido meter el balón en el patio, puesto que el muro tiene una altura de 3 m y el balón ha impactado contra él a 2,98 m. Deberá volverlo a intentar, quizás acercándose más al muro.
Ejercicio 3
En una prueba de atletismo de lanzamiento de peso, el atleta logra una marca de 22 m. Sabiendo que la bola sale de su mano a 2 m del suelo y con un ángulo de 45°, averiguar la velocidad inicial del lanzamiento.
SOLUCIÓN:
Para resolver el problema, igualmente emplearemos las fórmulas del movimiento rectilíneo uniforme y del movimiento rectilíneo uniformemente variado, que componen, como se ha repetido, el movimiento parabólico. Del movimiento MRU usaremos la fórmula:

Sabemos que v0 · cos θ es la componente horizontal de la velocidad v0). Despejamos el tiempo y la velocidad:

Ahora, vamos a la fórmula del espacio del movimiento rectilíneo uniformemente variado:

Sabemos también que v0 · sen θ es la componente vertical de la velocidad v0 y que la aceleración es la de la gravedad g con signo negativo, al ser contraria a la velocidad inicial. La altura final será cero, y = 0 m, puesto que la bola impacta en el suelo. La altura inicial será a la que suelta el atleta la bola de la mano, y0 = 2 m). Sustituimos por la expresión de t antes obtenida y ponemos los valores conocidos:

Despejamos de esta ecuación la t, pues tan 45° = 1.

Volvemos a la expresión anterior de v0.

Por lo tanto, 14,1 m/s será la velocidad de lanzamiento v0 buscada.
Ejercicio 4
Un bombardero vuela horizontalmente a una altitud de 3200 pies con una velocidad de 400 pies/s, cuando suelta una bomba.
5 segundos más tarde, un cañón situado bajo la trayectoria del bombardero, pero 5000 pies antes del punto en que el bombardero soltó la bomba (se supone que el cañón, en el suelo, está a 3200 pies bajo la trayectoria del avión), dispara un proyectil. Si el proyectil hace explotar la bomba a 1600 pies de altura. Hallar el ángulo de elevación del cañón y la velocidad inicial del proyectil.

En primer lugar, estudiamos el movimiento parabólico de la bomba, desde que la suelta el avión hasta el momento del impacto con el proyectil y la explosión.
La bomba comienza su recorrido a 3200 pies de altura con una velocidad inicial horizontal de 400 ft/s y, durante la caída, cuando llega a los 1600 pies impacta y explota.
Apliquemos la ecuación de la componente vertical del recorrido en el movimiento parabólico, tomando como sistema de referencia coordenadas con origen en el suelo en el punto de la vertical del momento de soltar el avión la bomba.

El vuelo es horizontal, luego el ángulo de salida de la bomba θ0b será cero, igual que su seno. Adoptamos un valor de la aceleración de la gravedad constante g = 32,18 ft/s².
Aplicamos valores a la ecuación anterior y despejamos tb, el tiempo en que tarda la bomba en caer desde los 3200 ft iniciales a los 1600 ft en que explota:

Conocido el tiempo de vuelo de la bomba, aplicaremos la siguiente fórmula para la componente horizontal del movimiento parabólico, que se corresponde con un movimiento rectilíneo uniforme:

La proyección horizontal del recorrido de la bomba son 3988,8 pies.
Ahora, conocidos los datos del movimiento de la bomba, vamos a estudiar el movimiento parabólico del proyectil disparado:
Nos dice el ejercicio que el cañón dispara el proyectil 5 segundos más tarde, por lo que el tiempo de vuelo del proyectil tp será:

También nos dice el ejercicio que el cañón está situado en el suelo y en la vertical la trayectoria del vuelo del bombardero, pero 5000 pies antes del punto en que se suelta la bomba.
Y el proyectil intercepta a la bomba a una altura sobre el suelo de 3200 – 1600 = 1600 pies.
Con estos datos, determinaremos el ángulo de elevación θ0p y la velocidad de tiro del cañón v0p:
Lo referenciaremos al sistema de coordenadas citado, el que tiene su origen en el suelo, justo en la proyección vertical del punto en que el avión suelta la bomba:

Como los dos móviles chocan en un punto, xib = xip = xi. Y también yib = yip = yi.
Aplicamos una de las ecuaciones del movimiento parabólico, la referida al eje Y del movimiento rectilíneo uniformemente variado (MRUV).

El signo menos es porque el sentido ascendente de la velocidad es contrario al de la aceleración de la gravedad.
Sustituimos valores:

Ahora, aplicamos otra de las ecuaciones del movimiento parabólico, la referida al eje X del movimiento rectilíneo uniforme (MRU).

Sustituimos valores:

Elevamos al cuadrado, miembro a miembro, las ecuaciones (1) y (2). La igualdad se mantiene:

Desarrollamos:

Sumamos miembro a miembro ambos términos de las dos igualdades, con lo que la igualdad se mantiene. Sacamos factor común:

Por la identidad fundamental de la trigonometría, sabemos que:

Por lo que:

La velocidad inicial del proyectil será de 1852,73 ft/s.
El ángulo de elevación del cañón lo calcularemos trigonométricamente, partiendo de la igualdad (1) :

El valor del ángulo lo hallaremos mediante el arcoseno:

El ángulo de elevación del cañón es 12,41°.
Ahora vamos a resolver la trayectoria del proyectilpor otro procedimiento, que muestra cómo un movimiento parabólico es la composición de un movimiento rectilíneo uniforme con otro vertical pero movimiento rectilíneo uniformemente variado.
La componente horizontal de este movimiento parabólico, que se corresponde con un movimiento rectilíneo uniforme, la podemos hallar fácilmente porque conocemos la proyección horizontal del recorrido del proyectil:

Y el tiempo en movimiento del proyectil (los 4,97 segundos calculados arriba).
Ésta es la componente horizontal de la velocidad:

Ahora, la componente vertical de la velocidad inicial del proyectil la averiguaremos con esta ecuación del movimiento rectilíneo uniformemente variado:

Conocemos la altura a la que llega el proyectil, el tiempo y el valor de g.

Esta es la componente vertical de la velocidad inicial del proyectil .
Sabiendo las dos componentes, se pueden hallar fácilmente tanto el valor de la velocidad inicial del proyectil v0p como el valor del ángulo de elevación del cañón θ0p:

A la vista de la figura, hallamos v0p mediante el teorema de Pitágoras:

Este es el módulo de la velocidad inicial del proyectil. El valor del ángulo de elevación del cañón θ0p lo hallaremos trigonométricamente:

Resultado: velocidad inicial del proyectil, 1852,73 ft/s y ángulo de elevación 12,41°.

Ahora, la componente vertical de la velocidad inicial del proyectil la averiguaremos con esta ecuación del movimiento rectilíneo uniformemente variado:

Conocemos la altura a la que llega el proyectil, el tiempo y el valor de g.

Esta es la componente vertical de la velocidad inicial del proyectil.
Sabiendo las dos componentes, se pueden hallar fácilmente tanto el valor de la velocidad inicial del proyectil v0p como el valor del ángulo de elevación del cañón θ0p:

A la vista de la figura, hallamos v0p mediante el teorema de Pitágoras:

Este es el módulo de la velocidad inicial del proyectil. El valor del ángulo de elevación del cañón θ0p lo hallaremos trigonométricamente:

Resultado: velocidad inicial del proyectil, 1852,73 ft/s y ángulo de elevación 12,41°.
Ejercicio 5
Un arquero lanza una flecha horizontalmente desde una torre de 12 m de altura. La flecha sale del arco a 15 m/s. Despreciando el rozamiento:
a) ¿Cuánto tiempo estará la flecha en el aire?
b) ¿A qué distancia de la torre llegará la flecha al suelo?
c) ¿Con qué velocidad impactará y con qué ángulo?
Solución:
a) Sabiendo la altura:

b) Aplicamos la fórmula del alcance basada en la componente horizontal del movimiento:

c) Para saber la velocidad del impacto se debe averiguar la componente vertical de la velocidad:

El valor de la velocidad del impacto se obtiene por el teorema de Pitágoras:

El ángulo de llegada lo da la función arcotangente, al saber los dos catetos, que son las dos componentes de la velocidad.

Ejercicio 6
En la ceremonia de inauguración de unas olimpiadas, un arquero lanza una flecha en llamas que logra introducir en el centro del pebetero, encendiendo su interior. El pebetero está a una altura de 36 m sobre el punto de lanzamiento y a una distancia horizontal de 35 m.
a. ¿Cuánto tiempo estará la flecha en movimiento? (se desprecia el rozamiento).
b. ¿A qué velocidad debe lanzar la flecha, si el ángulo de tiro es de 80°?
¿Cuál será la velocidad de entrada al pebetero y el ángulo?

Solución:
a. Se plantean las ecuaciones de las componentes horizontal y vertical de la posición en un punto de la trayectoria (ecuación [3]), poniendo los datos iniciales:

Se despeja v0 en la primera ecuación y se sustituye en la segunda, quedando el tiempo como única incógnita:

Se ha hallado el tiempo t de vuelo de la flecha, que son 5,75 segundos.
Para hallar v0 sustituimos t por su valor:

La velocidad de tiro v0 es de 35 m/s.
c. Para analizar la velocidad de llegada de la flecha al pebetero, hallaremos el valor de la componente vertical de la velocidad a los 5,75 s con el segundo sumando de la ecuación [2].

La componente vertical de la velocidad al llegar al pebetero es de -21,99 m/s (es negativa porque la flecha está bajando).
Y el ángulo de llegada α:


Un procedimiento alternativo para iniciar el ejercicio sería aplicar en primer lugar la ecuación alternativa del movimiento parabólico [5]. Con los datos del problema de distancia horizontal al pebetero de 35 m, el desnivel vertical de 36 m y el ángulo de tiro de 80°, se hallaría la velocidad inicial v0.

Se despeja v0 y se obtiene:

Con un buen redondeo, a una velocidad inicial de 35 m/s.
Desde un barco artillado se lanza un proyectil hacia una montaña situada a 4 km de distancia del punto de lanzamiento con una velocidad inicial de 400 m/seg y un ángulo de 20° por encima de la horizontal
Si se desprecia la resistencia del aire, determine:
A) altura máxima que puede alcanzar el proyectil
B) el tiempo que tarda el proyectil en llegar a la montaña (Tv)
C) la altura al la cuál impactará el proyectil a la montaña
D) módulo de velocidad y ángulo de la velocidad
Aplica las ecuaciones del movimiento parabólico de esta página.
A) La altura máxima que puede alcanzar el proyectil se obtiene de la fórmula que tienes de altura máxima.
ymáx = 953,45 m (compruébalo)
B) La componente horizontal, constante en el movimiento parabólico, es:
vx = 400 * cos 20° = 375,88 m/s
El tiempo en impactar contra la montaña, que está a 4000 m se obtiene de esta ecuación del MRU:
t = 4000 / 375,88 = 10,64 s
C) La altura del impacto contra la montaña la puedes obtener de las ecuaciones del movimiento parabólico, igualando el tiempo, que lo tienes directamente en esta página, en «ecuación alternativa del movimiento parabólico».
yimpacto = 900,4 m
D) La componente vertical de la velocidad en el impacto:
vimpacto = 400 * sen 20° – 9,81 * 10,64 = 32,43 m/s
El módulo de la velocidad en el impacto y su ángulo lo obtienes por Pitágoras y trigonometría.
377,27 m/s y 4,93°
Un proyectil con movimiento parab ́olico se encuentra en el punto P, donde su velocidad instant ́anea es de 30 m/sy forma un ́angulo de 70°bajo la horizontal. Si el proyectil se demor ́o 4.48 s en llegar a P desde el lanzamiento,determine la velocidad inicial.
Ayuda por favor no entiendo este ejercio porque para hallar la velocidad inicial necesito el alcance maximo pero para hallarlo necesito la velocidad inicial ;-; no entiendoooo
Basándote en las fórmulas de esta misma página:
La componente horizontal, constante durante todo el movimiento, es:
vx = 30 * cos 70° = 28,19 m/s
Aplica el teorema de Pitágoras para ver la relación entre las componentes vertical y horizontal de la velocidad v4,88 = vP en el punto P (la componente vertical vy4,88 y horizontal vx4,88 en el instante t = 4,88 s ,que ya sabes que vx es 28,19).
30² = 28,19² + (v0 sen 70° – 9,81 * 4,88)²
Despeja v0
Excelente aporte, muchas gracias
Laboratorio: Características del MP
Material: Una Hoja cuadriculada, simulación – tablets
MENU: INTRODUCCION
1 Construye una tabla con los datos siguientes: Altura Cañón- Angulo- Velocidad y distancia
2 Coloca la altura del cañón en 10 m y el ángulo a 0°
3 Coloca la rapidez en 5 m/s y dispara – apunta el valor de la distancia alcanzada …..
Hola amigo. me podría ayudar con el siguiente.
Un balón de futbol es pateado en linea recta, teniendo una distancia de 11 metros desde el punto de penalti hasta el arco. Si el pateador lo hace con una velocidad de 34.7 m/s, con un ángulo de 32.2 grados, que tan arriba o tan abajo del travesaño llegara el balón ? (hacia arriba son valores positivos y hacia abajo valores negativos ). Nota: altura del arco es 2.4 m
Un problema similar lo tienes en el ejercicio 2 de esta página. Resuélvelo y comprobaras como el balón pasa muy por encima del travesaño.
Los ejercicios y soluciones bien planteadas por dos métodos por caida libre y las fórmulas por movimiento parabolico
me gustaria saber las referencias para poder entender mejor el desglose de las ecuaciones.
Buenos días me ayuda con este ejercicio
un bombardero que vuela con una velocidad horizontal constante de 483 k/h, a una altura de 5487 m apunta para dar de lleno a un automóvil que se mueve con velocidad constante de 145 Km/h, en el mismo plano vertical. Para que el proyectil impacte en el blanco, determine el ángulo ɵ que debe formar la visual al tren con la horizontal en el instante que el avión debe soltar la bomba
Consulta la página Tiro parabólico horizontal en UNIVERSO FÓRMULAS. Cuando tengas resuelto el punto de impacto, y averiguado el tiempo de vuelo, aplica la fórmula del Movimiento rectilineo uniforme del tren, también en UF.
Saca el ángulo trigonométricamente (arco coseno).
Buenos días me ayuda con este ejercicio
un proyectil es lanzado en la superficie de la tierra, con una velocidad de 5 m/s formando un ángulo de 30º sobre la horizontal. El viento de esa región genera una aceleración vertical hacia arriba de 1 m/s^2 . Determine el tiempo que necesita el proyectil para llegar al suelo
Buenos días me ayuda con este ejercicio
Una partícula tiene una velocidad inicial de 10 m/s a lo largo del eje y positivo. Al mismo tiempo sufre una aceleración de 2 m/s^2 en la dirección x positiva. Determine:
a)su posición y su velocidad a los 3 s
b)la ecuación de la trayectoria del movimiento de la partícula
AYUDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Los electrones, como todas las formas de materia, caen bajo la influencia de la gravedad. Si un electrón es proyectado horizontalmente a una velocidad de 3.0 x 107 m/s (un décimo de la velocidad de la luz), ¿qué tan lejos caerá al atravesar 1 m de distancia horizontal?
Que formulas utilizo para resolver este ejercicio ? ya que no me dan altura o un Angulo…………..
No te hace falta. Horizontalmente, θ = 0°.
Y la altura inicial considerala 0. Es lo que cae.
Y que formula tengo que usar?
Las del movimiento parabólico.
Establecer un sistema de referencia. Origen en (0, 0) por ejemplo, con el movimiento MRU en el eje X.
Tener en cuenta que si el electrón atraviesa un campo eléctrico perpendicular E, la aceleración en la componente vertical del movimiento (eje Y) debe considerarse a la ocasionada por E.
La fórmula:
a = e * E / m
e es la carga del electrón.
m es la masa del electrón.
La dirección de la aceleración es contraria a la dirección del campo E
AYUDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Los electrones, como todas las formas de materia, caen bajo la influencia de la gravedad. Si un electrón es proyectado horizontalmente a una velocidad de 3.0 x 107 m/s (un décimo de la velocidad de la luz), ¿qué tan lejos caerá al atravesar 1 m de distancia horizontal?
Que formulas utilizo para resolver este ejercicio ? ya que no me dan altura o un Angulo
Buenas tardes por favor ayuda con esta pregunta
Un bateador golpea una pelota con angulo de 30º(elevación) y es recibida por un jugador a 120m del home hallar
Velocidad inicial de la pelota
Altura máxima alcanzada
Tiempo que estuvo en el aire
En la página tienes las fórmulas de velocidad, altura y tiempo.
Despeja la velocidad en la fórmula del tiempo de vuelo. Dado el sen 30° te da v0 = t * g
Sustitúyelo en la fórmula del alcance. El tiempo te dará 3,75 s
Halla la velocidad inicial multiplicando por g.
Y ya puedes calcular la altura máxima (17 m)
Un muchacho que se encuentra a una distancia d=5m de la base de un edificio intenta lanzar una pelotita a través de una ventana de tamaño H=1m que esta a una altura h =7m . Si la pelota ha de atravesar la ventana cuanto este en lo mas alto de su trayectoria determinar :
– La velocidad inicial (módulo y dirección) que ha de llevar la pelota para pasar justamente bajo el borde superior de la ventana. (La aceleración de la pelota es de 9,81 m/s2 vertical hacia abajo.)
Ayudame porfavor !!
Buenas noches necesito ayuda con una preguntas
Un niño lanza un balon horizontalmente desde la azotea de un edificio cuya altura es de 40 m, si el balon golpea el suelo en un punto ubicado a 85m de la base del edificio determina:
A. Tiempo que el balon esta en el aire
B. la magnitud del vector velocidad inicial
C. la magnitud del vector velocidad final
Me ayudarian demasiado
Con las fórmulas de esta página y con las de la página Caída libre de UNIVERSO FÓRMULAS, lo resuelves.
A) Considerando la componente vertical del movimiento parabólico, que es un MRUA y en la página Caída libre de UNIVERSO FÓRMULAS
t = √(2h/g) = √(2 * 40/ 9,81) = 2,86 s
La velocidad inicial es la misma que la componente horizontal del movimiento v0x
B) v0 = v0x = e / t = 85 / 2,86 = 29,72 m/s
Hay que calcular la componente vertical de la velocidad final, que la encuentras también en la página Caída libre de UNIVERSO FÓRMULAS:
vyf = g * t = 9,81 * 2,86 = 28,06 m/s
La magnitud final de la velocidad la sacas por Pitágoras a partir de estas dos componentes. 40,87 m/s
me podrian ayudar
un proyectil se dispara horizontalmente con una rapidez inicial de 300m/s, desde una montaña cuya altura es 500 m
A. Halla el tiempo que el proyectil esta en el aire .
B. Calcula el alcance horizontal del proyectil.
GRACIAS
Hola, podrías ayudarme con estas preguntas generales de movimiento parabólico: ¿cuánto vale la componente vertical de la velocidad en la altura máxima? y ¿cuánto vale la magnitud de la velocidad en la altura máxima?
Si miras atentamente el contenido de la página verás enseguida las respuestas.
Sólamente quedate en que es un movimiento ‘compuesto’ por un MRU horizontal y un MRUA vertical (con a = g.
La 1. Componente vertical nula. Ha terminado de subir y comienza a descender.
La 2. Como en la altura máxima la componente vertical es cero, la velocidad sólamente tiene la componente horizontal (que se mantiene constante en toda la trayectoria).
Hola me podrían ayudar con este ejercicio:
Un niño deja caer un coche por el borde de una mesa de 70 cm de
altura después de empujarlo sobre ella con una velocidad de 30
cm/s. ¿A qué distancia de la mesa cae el coche?
Puedes resolverlo considerando las dos componentes del movimiento parabólico:
Horizontal, un MRU.
Vertical, un MRUA. Busca Caída libre en UNIVERSO FÓRMULAS.
Calcula el tiempo de caída. h = 0,70 m y g = 9,81 m/s²
(t = 0,38 s)
Con ese tiempo, calcula la distancia de la mesa al punto de caída, teniendo en cuenta la componente horizontal (MRU).
x = vt = 0,3t = 0,3 * 0,38 = 0,113 m
O 11,3 cm
Hola me podrian ayudar por favor como saco la velocidad inicial vertical y orizontal si solo me da los datos de vo=50m/s y y la altura aprox 100m
Supongo que los 100 m es la altura máxima.
Aplica su fórmula
ymáx = (v0²sen² θ) / 2g
100 = (50²sen² θ) / 2*9,81
Despeja θ
Componente horizontaL:
50cos θ
Componente verticaL:
50sen θ
Desde la parte superior de un plano inclinado 37° con la horizontal, se lanza horizontalmente una esfera inicia de 10m/s. Determinar el alcance de la esfera a lo largo del plano inclinado
Faltan datos:
longitud del plano inclinado.
(El alcance a lo largo del plano inclinado será la longitud del plano)
Aceleración debido a la gravedad a lo largo del plano inclinado a = gsen 37°
Buenos días, me pueden ayudar con este problema;
un jugador de basquetbol lanza desde el suelo la pelota con una velocidad inicial de 10 m/s que hace un angulo de 53° con la horizontal, la canasta esta situada a 6 metros del jugador y tiene una altura de 3 metros. ¿podrá encestar?
En la página Movimiento parabólico:ejercicios resueltos de UNIVERSO FÓRMULAS, tienes un ejercicio parecido.
Hola me prodrian ayudar con este problema
Si la flecha da en el blanco en 8 segundos .Halle la velocidad de lanzamiento
En el tiro con arco olímpico la diana está a 70 m del lanzador.
Despreciando el rozamiento, peso de la flecha, que lo desconozco y la trayectoria parabólica, la componente horizontal de la velocidad de la trayectoria parabólica será:
V = 70 / 8 = 8,75 m/s
Gracias
Buenas tardes, me pueden ayudar con un ejercicio: Un proyectil ha sido lanzado con movimiento parabolico de modo que su alcance horizontal fue 250m Sabiendo que la velocidad de disparo llego a ser 50m/s. ¿cual es el angulo de disparo? (g=9.8m/s)
De esta misma página, aplica la fórmula de alcance horizontal máximo.
250 = [50² * sen (2θ)] / 9,8
Obtén el ángulo mediante el arcoseno.
Una máquina lanza un proyectil a una velocidad inicial de 110 m/s , con ángulo de 35°, Calcular: a) Posición del proyectil a los 6s, b) Velocidad a los 6s, c) Tiempo en la máxima altura, d) Tiempo total del vuelo, e) Alcance logrado
NOMBRAR COMPONENTES DEL MOVIMIENTO PARABÓLICO
Los tienes todos en esta página.
Holaaa, tengo que hacer una investigación de la balística de las pistolas NERF, me puedes decir que practica puedo utilizar con sus respectivas variables? GRACIAS
Tanto en esta página como en movimiento parabólico (ejercicios resueltos), también de UNIVERSO FÓRMULAS, tienes las fórmulas y ejercicios con las variables que pueden intervenir en balística. Però teòricamente, despreciando el rozamiento con el aire, el viento, etc.
ayudameporfa
Una canica rueda sobre una mesa de 1.0 m de alto y golpea el piso en un punto a 3.0 m del borde de la mesa en dirección horizontal. (a) ¿Cuánto dura la canica en el aire? (b) ¿Cuál es la velocidad de la canica cuando sale del borde de la mesa? (c) ¿Cuál es su velocidad cuando golpea el piso?
Puedes fácilmente resolverlo con las fórmulas de esta página, ayudándote, si quieres de la de caída libre y del MRU de UNIVERSO FÓRMULAS.
a) El tiempo en el aire será el mismo que el tiempo de caída, partiendo de una componente vertical nula, como es el caso.
h = 1/2(gt²) >> t = √(2h/g) = √(2*1/9,81) = 0,45 s
b) La velocidad será la componente horizontal del movimiento parabólico. Mientras ruede sobre la mesa la componente vertical de la velocidad es cero.
La componente horizontal se mantiene constante en un movimiento parabólico y sigue las leyes del MRU.
Ph = v0 * cos θ * t >> 3 = vx * 0,45 >> vx = 3 / 0,45 = 6,64 m/s
c) La componente vertical de la velocidad en el impacto se obtiene de
vy = g * t = 9,81 * 0,45 = 4,23 m/s
También da el mismo resultado por la componente vertical en caída libre
vx = √(2gh) = √(2 * 9,81) = 4,23 m/s
La velocidad final de impacto, por Pitágoras a partir de las dos componentes finales de la velocidad
vf = 7,99 m/s
Se da una patada a una pelota y sale con un ángulo de 60° y velocidad de 30m/s calcular a que altura se encuentra en 1,2 sg? Cual velocidad real al 1,8 sg? Si la portería está a 45m la pelota entra o pasa por arriba
Para ver la altura a los 1,2 seg ve a la fórmula que tienes en esta página de la posición y toma la componente vertical, que es la que te dará la altura y que es la afectada por el vector unitario vertical j. Dando valores a la velocidad inicial (30) al sen 60° y a los 1,2 seg, tendrás una altura de 24,11 m.
Arriba, en la página, tienes la fórmula de la velocidad en un tiempo t. En este caso 1,8 seg.
Halla la componente horizontal de la velocidad, que sabes que es constante en el movimiento parabólico, (vector i) y halla también la componente vertical de la velocidad a 1,8 seg (vector unitario j). Calcula la velocidad real a los 1,8 seg mediante el teorema de Pitágoras.
Como la portería está a 45 m y sabes que su altura reglamentaria es de 2,44 m, mira cuanto tiempo tarda la pelota en pasar por la vertical de la porteria. La componente horizontal de la velocidad es constante. Ve a la fórmula del MRU (UNIVERSO FÓRMULAS). t = e / v = 45 / 15 = 3 seg. Tarda 3 seg en llegar a la vertical de la portería.
Aplica la componente vertical de la fórmula de la posición (vector j). Dale valores y la pelota pasará a 24,11 m, muy por encima del larguero.
Hola! me podrían por favor apoyar con esté ejercicio.
El alcance máximo de un proyectil lanzado con un ángulo de 37o es 178 m. ¿con qué
velocidad se lanzó? ¿Qué altura máxima alcanza?
Tienes dos fórmulas en esta página que te resolverán el problema.
Alcance máximo
Tienes el alcance de 178 m y el ángulo θ de 37°.
Despeja v0
Ahora tienes los datos para la fórmula de la altura máxima
Espero que te sirva.
hola me podrian ayudar con este ejercicio
una flecha se dipara con un angulo de 52° con respecto a la horizontal y con una velocidad de 30m/s
cual es su posicion horizontal y vertical despues de 4 segundos
determine las componentes de su velocidad despues de 4 segundos (exprese dicha velocidad con un vector)
Las componentes de la posición a los 4 seg las hallas con la fórmula del apartado posición de esta página.
La componente horizontal de la velocidad en un movimiento parabólico sabes que es constante:
v0x = v0 * cos 52°
La componente vertical de la velocidad a los 4 seg se corresponde con un movimiento rectilíneo uniformemente retardado. (consulta Caída libre en UF).
vy4 = v0 * sen 52° – g * t = 30 * sen 52° – 9,81 * 4
Hola me pueden ayudar con este problema una pelota es lanzado desde el suelo con cierto ángulo de inclinación determina la rapidez con que se lanza la pelota si solo disponemos con una cinta métrica y cronómetro
1-hallar el alcance horizontal
2-la velocidad horizontal
3-el tiempo que tardó la pelota en tocar el suelo
4-la componente vertical de la velocidad inicial
5-el ángulo de elevación de la pelota
datos
distancia: 0,0192 m
tiempo promedio: 1,423
El dato de distancia de 0,0192 m ¿Es correcto?
¿Cómo es que se pide el alcance horizontal si como datos das la distancia?
hola me pueden ayudar con el siguiente problema?: Un proyectil de 400 kg parte del origen con
una velocidad inicial de 100 m/s. Si se quiere que impacte en un objetivo a 1000m de distancia y 25 m
arriba del punto del disparo, determine las dos direcciones en que puede dispararse para lograrlo. Considere despreciable la resistencia del aire
Usa las ecuaciones del movimiento parabólico. La relativa a la posición.
p = [x0 + (v0 * cos θ)t]i + [y0 + v0 * sen θ * t – gt² / 2]j
La componente horizontal de la posición en un tiempo t de un tiro parabólico es:
xt = x0 + (v0 * cos θ)t
1000 = 0 + 100 * cos θ * t
Despeja t:
t = 10 / cos θ
En la componente vertical del movimiento parabólico, que es un MRUA con aceleración –g (porque la gravedad g = 9,8 m/s², es de signo contrario al de la velocidad inicial).
yt = y0 + v0 * sen θ * t – gt² / 2
25 = 0 + 100 * sen θ * t – 4,9 * t²
Sustituye en esta ecuación la expresión de t hallada anteriormente:
25 = 0 + 100 * sen θ * (10 / cos θ) – 4,9 * (10 / cos θ)²
Halla, mediante operaciones trigonométricas (sen θ / cos θ = tan θ y 1 + tan² θ = 1 / cos² θ).
Sustituyendo, queda una ecuación de segundo grado con incógnita tan θ
Resuelve la ecuación. De cada una de sus dos raíces, halla el arco tangente y tendrás los dos ángulos de tiro
Un grupo de estudiantes de ingeniería ambiental de la UNAD están en una salida de campo y hacen una caminata de acuerdo a la siguiente información. Primero recorren 1.13×10³ m al este, después ello, caminan 2.16×10³ m hacia el sur, continúan el recorrido caminado 3.12×10³ m a 30 grados al sur del oeste, donde encuentran un río, el cual les impide continuar con el recorrido. Para terminar su salida de campo y volver al punto de partida, el grupo de estudiantes se devuelve 4.36×10³ m en dirección de 40.5 grados hacia el oeste del norte, pero lamentablemente, notan que están perdidos. A partir de la anterior información:
A. Representa cada uno de los cuatro desplazamientos realizados por el grupo de estudiantes, en términos de los vectores unitarios; dicho de otra manera, determine las componentes rectangulares de cada uno de los cuatro vectores de desplazamiento.
B. Determine analíticamente las coordenadas del vector desplazamiento total, el cual es la suma de los cuatro desplazamientos iniciales, propuestos en la parte (a) del ejercicio.
C. Determine la distancia y la dirección que deben tomar los estudiantes para volver al campamento. Recuerde que esta dirección debe especificarse con ángulo y referencia a los puntos cardinales.
D. Represente de manera gráfica, en un plano cartesiano a escala, todo el recorrido del grupo estudiantil, incluido el vector desplazamiento que les permite volver al punto de partida.
E. ¿Cuál es la distancia total recorrida por los estudiantes en su caminata? (no incluya el trayecto de devuelta al punto de partida)
Buenos dias me podria ayudar con este ejercicio…
Se ha producido una avalancha de nieve y en medio de ésta se observa el tronco de un pino que se dirige colina abajo, la cual termina en un acantilado que tiene una distancia hasta el suelo de 7.7 m. Si en el momento que el tronco llega al filo del acantilado, su velocidad horizontal es de 17.9 m/s, determine:
A. El tiempo que le tomará al tronco en caer hasta el fondo de acantilado.
B. La distancia horizontal “x” recorrida.
C. La magnitud de la velocidad con que llega al fondo del acantilado.
D. Las coordenadas del vector de posición final, en términos de los vectores unitarios.
A) 0 = yfilo – ½ * 9,81 * t² = 7,7 – ½ * 9,81 * t²
t = 1,25 s
B)x = vx * t = 17,9 * 1,25 = 22,37 m
C) vysuelo = vyfilo – g*t = vyfilo + 9,81 * 1,25
Hola, por favor podrías ayudarme con un ejercicio?
Uno de los lanzamientos más rápidos registrados en las ligas mayores de béisbol fue hecho por Tim Lincecum a 101 mi/h en el 2009. Si alguien lanzara horizontalmente con esta velocidad, ¿ a qué distancia caería verticalmente la bola al momento de alcanzar el plato de bateo, a 60.5 pies?
No conozco bastante las reglas del béisbol.
Supongamos que se trata de un lanzador que suelta la bola horizontalmente a 101 mph y a una altura sobre el suelo de 5 pies.
Podría suponer también (aunque no lo capto en tu propuesta) que propones que la bola llega al suelo del plato de bateo, que esté situado a 60,5 pies del lanzador.
Falta que me aclares el significado de «caer verticalmente la bola en el momento de alcanzar el plato de bateo.
Espero tu ampliación.
Solo esos datos son los que se me ha dado, supongo que con lo de «caer verticalmente se refiere a la altura», busque en google algún ejercicio similar, porque la verdad estoy ayudando a una amiga con esto y encontré uno similar y lo resuelven pasando las 101 millas por hora a m/sg y los pies a metros, saca el tiempo con la fórmula t=d/v y luego la altura h= 1/2 g.t´¨2, la respuesta me dio a 0.81m y no sé si este bien hecho o no…….ayuda!
Nadia, no es necesario buscar en Google. Solamente entender el planteamiento.
Lo primero es pasar a las mismas unidades. Longitud y velocidad a pies y pies/s o a metros y metros/s. Pongamos a m y m/s.
El tiempo que emplea la bola en llegar al bateador efectivamente lo calculas por la fórmula del MRU, pues este es el de la componente horizontal de la velocidad vx.
Sabiendo el tiempo, con la fórmula del espacio del MRUA, que se corresponde con la componente vertical, puedes calcular a qué altura le llega la bola al bateador. Puedes considerar que sale del lanzador con una altura inicial y0 = 5 pies.
Es correcto, la altura que pierde la bola es 1/2gt². En ese caso, esa caida se la restas a la altura de lanzamiento, que yo había supuesto de 5 pies, es decir, de 1,52 m.
Ok, muchas gracias, por la ayuda 😀
Me podrias ayudar con un ejercicio?
Un jugador de básquet al lanzar el balón lo hace alzando la mano desde una altura de 2 m y con una rapidez inicial de 50km/h. si el aro se halla a una altura de 3,05 m y una distancia de 5 m, ¿cual es el ángulo de tiro con el que podría encestar?
Mi profesor dijo que la respuesta es 19°. Pero no he logrado dar con la operación correcta
Efectivamente, un ángulo de tiro, con una buena aproximación, es de 19°
Usa las ecuaciones del movimiento parabólico. La relativa a la posición.
La componente horizontal de la posición en un tiempo t de un tiro parabólico es:
x = x0 + v0 * cos θ * t
Pasa la velocidad de Km/h a m/s y te da 13,89 m/s
5 = 0 + 13,89 * cos θ * t
Despeja t en el término de la componente horizontal.
t = 5 / 13,89 * cos θ
En la componente vertical del movimiento parabólico, que es un MRUA con aceleración -g (porque la gravedad es de signo contrario al de la velocidad inicial).
y = y0 + v0 * sen θ * t – gt² / 2
3,05 = 2 + 13,89 *sen θ t – 4,9 * t²
Ordena los valores numéricos de esta expresión y sustituye en ella t por el valor hallado anteriomente.
Halla, mediante operaciones trigonométricas (sen θ / cos θ = tan θ y 1 + tan² θ = 1 / cos² θ).
Queda una ecuación de segundo grado con incógnita tan θ
Resuelve la ecuación. De sus dos raíces, halla el arco tangente y tendrás los dos ángulos de tiro. Uno de ellos el 19°
La otra raíz lleva a un ángulo de 71°, que, al margen de las matemáticas y la física, no parece un ángulo muy habitual para tirar a canasta desde 5 m.
Espero que te sirva.
Buenas noches necesito ayuda con esto: Se lanza una pequeña bola con una velocidad
inicial de (40m/s; 53º), según se indica en la figura. La
bola se emboca en un tubo inclinado 45º, de tal forma
que la dirección del movimiento de la bola coincide con
la inclinación del tubo en el momento de entrar en él.
Halle las coordenadas de la boca del tubo.
Halla las componentes de la velocidad, vertical y horizontal en el momento de lanzamiento.
La componente horizontal es constante en el movimiento parabólico (un MRU).
Cuando la bola entra en el tubo a 45°, las componentes vertical y horizontal en ese punto deben ser iguales (tan 45° = 1). Llámale al tiempo transcurrido t1<\sub>.
La componente horizontal inicial es 40*cos 53° m/s.
La componente vertical a la entrada del tubo (MRUA), que, como hemos dicho, es igual a la horizontal, que se mantiene constante:
40*cos 53° = 40*sen 53° – 9,81*t1 m/s
Despeja t1
Puedes hallar la componente vertical de la posición:
40*sen 53° * t1 – (1 / 2) * 9,81 * t 1² m
La componente horizontal de la posición será:
40*cos 53°*t1 m
Buenas Noches, necesito ayuda con esto:
Una persona se sube a un sillon el cual tiene 0,41 m y lanza un moneda, la altura del sillon a la mano es de 0,89 m, y la altura de la mano hasta la cabeza es de 0,59, Diga:
A) velocidad inicial
B) altura maxima
C) velocidad con la que impacta el suelo
D) ángulo con la que fue lanzada la moneda
¿Seguro que es eso lo que te piden en el ejercicio?
Repasalo, porque no veo el sentido y, en el mejor de los casos, faltan datos.
Ayudame con un ejercicio de movimiento semiparabolico
Desde una altura h se dispara horizontalmente un proyectil con una velocidad de 44.1 m/s. Sí el proyectil llega al suelo con velocidad de 73.5 m/s, halle los datos:
a) La velocidad al finalizar el movimiento:
b) Altura h desde la cual se efectuó el disparo:
c) Alcance horizontal del proyectil:
Parábola es simétrica respecto al eje que pasa por el vértice (punto de altura máxima).
Vamos a hallar el ángulo de llegada, que por simetría, es igual al de lanzamiento θ para aplicar las fórmulas.
cos θ = 44,1 / 73,5 = 0,6
θ = arc cos 0,6 = 53,13°
a) 73,5 m/s
b) Fórmula de la altura máxima:
ymáx = (v0²*sen² θ) / 2g
ymáx = 73,5²*0,8²/2*9,81 = 176,22 m
c) Fórmula del alcance máximo:
xmáx = (v0²*sen 2θ) / g = (73,5² * sen 2*53,13°) / g = 528,66 m
Como el tiro es semiparabólico, el alcance será de 528,66 / 2 = 264,33 m
Hola quisiera q me ayudarán con este problema
Se patea un balón de fútbol con un ángulo de 37° con una velocidad de 20/m/Segundo
calculé
Altura máxima?
El tiempo que permanece el el aire?
La distancia con la que llega al suelo?
La velocidad en XY del proyectil?
Espero q me ayuden
El ejercicio 1 de esta página resuelve lo que te pide tu problema.
Tienes la fòrmula de la velocidad en la trayectoria.
necesito ayuda para saber de donde se saca el numero 2.9,81 del ejercicio 1
o ya entendí
en el primer ejercicio no entiendo de donde saca 2.9,81 y me interesaría saber de donde se saca para poder proseguir con lo siguiente =)
9,81 m/s² es la aceleración de la gravedad.
Multipica 9,81 por 2
2*9,81
esto si entiendo
Ayuda no entiendo este problema.
Demuestre que el disparo de una pistola puede alcanzar el triple de altura cuando tiene un ángulo de elevación de 60°, que cuando su ángulo es de 30°; pero que tendrá el mismo alcance horizontal.
Espero puedan ayudarme.
Ve a la fórmula de alcance horizontal máximo en esta misma página de UNIVERSO FÓRMULAS. Verás que el alcance horizontal depende del seno del angulo doble del de tiro. Como el seno de 2*30° es igual al seno de 2*60°, el alcance horizontal máximo será el mismo.
Ahora ve a la fórmula altura máxima. Depende del cuadrado del seno del ángulo de tiro. Ese cuadrado es triple en el caso de 60° que en 30°
Espero que te sirva
en lo primero de la velocidad, la aceleración, ¿que significa la i y la j?
Se refiere a los vectores. El vector i es el vector unitario (módulo 1) asociado a la dirección de el eje de las abcisas u horizontal. El j corresponde al vertical u ordenadas. El producto por i y por j forma las componentes cartesianas horizontales y verticales de las magnitudes vectoriales que intervienen en el movimiento.
entonces no tiene ningún valor , yo iba hacer la misma pregunta :
Son vectores unitarios (con dirección, sentido y módulo 1).Se llaman tambien versores. Sirven para convertir una magnitud escalar (por ejemplo la componente vertical de la celeridad) en un vector de la magnitud igual al escalar y la dirección correspondiente del sistema de coordenadas cartesiano.
Consulta producto de un vector por un escalar en Multiplicación de vectores de UNIVERSO FÓRMULAS.
no se
El 10 de abril de 2018 se dio a esto la siguiente respuesta:
Son vectores unitarios (con dirección, sentido y módulo 1).Se llaman tambien versores. Sirven para convertir una magnitud escalar (por ejemplo la componente vertical de la celeridad) en un vector de la magnitud igual al escalar y la dirección correspondiente del sistema de coordenadas cartesiano.
Consulta producto de un vector por un escalar en Multiplicación de vectores de UNIVERSO FÓRMULAS.
me ha servido de mucha ayuda gracias
Y no se tiene en cuenta la resistencia del aire? estoy de acuerdo con las formulas en el vacio pero deberiamos de añadir la resistencia del aire que frena la velocidad vertical y la horizontal. No se como considerarlo, habrá alguna ecuación diferencial por medio.
En balística hay fórmulas que consideran la resistencia del aire, la presión el viento y su dirección, el factor de forma del proyectil, la altura por la variación de la aceleración de la gravedad, y muchas más. Pero eso rebasa esta web.
Falta un ejemplo en el cuál te den: distancia total recorrida y tiempo total; encuentre Vo inicial y ángulo.
Una partícula está en movimiento parabólico y cuando está en su punto de altura máxima, tiene la mitad de la rapidez que tenía cuando estaba a la mitad de su altura máxima. ¿Cuál es su ángulo de salida?
Nuestro goleador ve muy salido al arquero y patea al arco enviando la pelota con un
ángulo de 45°. El arquero se encuentra a 12 metros de la portería. La rapidez de la bola al
salir del pie es de 25 m/s. Si la bola pasa a veinte cm. por debajo del palo y nuestra portería
mide 2,5 m de alto, diga:
a) A que distancia se encontraba nuestro héroe al momento de patear el rebote.
b) Calcule también la velocidad y la rapidez de la bola al momento de ingresar al arco.
c) Diga a qué velocidad debe correr el portero si quiere atajar.
Sigue los pasos, adaptados a este problema, del segundo ejercicio de la página «Movimiento parabólico» de Universo Fórmulas.
Tienes que resolver una ecuación de segundo grado para hallar, por ejemplo,el tiempo que tarda la pelota en ingresar a la portería.
La velocidad delportero es dividir 12 m por el tiempo hallado.
Buenas noches en el ejercicio del muro del colegio, si realizamos la operación la respuesta es diferente de la que Usted la presenta
Pese a que en el enunciado del ejercicio se dice que el hombre se encuentra a 45 m del muro, en el texto antes de aplicar la ecuación para hallar el tiempo que emplea el balón para llegar al muro,m parece que se habrá colado un error, sustituyendo, tanto en el texto, como en la fórmula, la distancia planteada de 45 m por la de 53 m. El tiempo hallado, en cambio es correcto de 3,27 segundos Observe en que, inmediatamente debajo, en el párrafo se vuelve a repetir la distancia correcta de 45 m e, igualmente, en el dibujo ilustrativo del movimiento. Es decir, que los cálculos y el resultado son los correctos. El error está en el numerador del cálculo del tiempo, pero que no tiene efecto sobre el resultado.
Yo les dejo un ejercicio que resolví con la formula de Alcance horizontal máximo. Un motociclista hizó un salto con una rampa a 40° y alcanzó una velocidad de 40m/s Justo a la salida de la rampa. La altura máxima que alcanzo fue de 33.7 metros.
hola: le hizo falta un ejemplo donde se apliquen todas las formulas
muy bueno gracias
Gracias !!! esto me es de mucha ayuda !!
muchas gracias por el TEMA me sirvio de mucho me gustaria con imagenes de proyectiles si es posible
realmente me ha servido muchisimo y es muy completo! gracias por esto! 🙂
muchas gracias por la informacion se los agradesco con esto de las formulas