× NO BLOQUEES a Universo Formulas

¡Hola! Al parecer tienes en el navegador un bloqueador de anuncios (Adblocker, Ablock Plus,...) que impide que se visualicen nuestros anuncios.

Queremos recordarte que este proyecto vive únicamente de la publicidad y que sin estos ingresos no podremos seguir ayudándote.

No te pedimos que desinstales tu bloqueador de anuncios, sólo que no actúe en las páginas de nuestro dominio universoformulas.com y así podremos mostrarte nuestros bloques de anuncios.

Icono de AdBlock Icono de AdBlock Plus Icono de UBlock Icono de AdBlock Pro Icono de Fair AdBlock Icono de Adguard AdBlock

¡Gracias por todo y que sigas disfrutando de Universo Formulas!

Este aviso se cerrará automáticamente en 30 segundos.

Fuerza de rozamiento (o fuerza de fricción)

ANUNCIOS
1 estrella2 estrellas3 estrellas4 estrellas5 estrellas (1 votos, promedio: 4,00 de 5)
Cargando…

La fuerza de rozamiento (o fuerza de fricción) es la fuerza que aparece por el contacto entre dos cuerpos.

Normalmente parece que el fenómeno del rozamiento produzca efectos negativos. Pero no siempre es así, ni mucho menos.

Sin el rozamiento no podríamos frenar los automóviles con las pastillas de freno, los discos de embrague no permitirían transmitir el movimiento a las ruedas, los trenes no podrían moverse sobre las vías, no podríamos andar y, entre muchísimas acciones cotidianas más, no podríamos encender una cerilla (o cerillo).

Rozamiento (o fricción)

Aquí se ve una aplicación práctica de las Leyes de Newton, en concreto, de la Segunda Ley de Newton, según la cual, la resultante de las fuerzas que actúan sobre una masa producen una aceleración proporcional a dicha resultante.

Cuando dos cuerpos están en contacto, existen, normalmente a nivel microscópico, unas alteraciones, unas rugosidades que se oponen a que un cuerpo se deslice sobre el otro.

Dibujo de la fuerza normal en la fuerza de rozamiento

Veamos la siguiente figura, donde un cuerpo de un cierto material de masa m descansa sobre una superficie horizontal, también de determinado material. Según la Tercera Ley de Newton, a la fuerza que ejerce m sobre la superficie se le opone otra igual y de sentido contrario, a la que llamaremos fuerza normal, es decir FN = –mg.

Puede ocurrir que se aplique a m una determinada fuerza en la dirección del plano F, o bien que inclinemos la superficie de apoyo un cierto ángulo α y, en los dos casos, el cuerpo no se mueva, que siga en reposo. Esto es debido a que hay una fuerza de rozamiento estático ocasionada por las características del contacto entre los dos materiales a las que se han aludido antes (a la que llamaremos Fre) que impide el movimiento.

Dibujo de la fuerza de rozamiento (o de fricción) en un plano inclinado

Esta fuerza de rozamiento estático es directamente proporcional a la fuerza normal.

Dibujo de la fuerza de rozamiento (o de fricción) estático

Coeficiente de rozamiento estático

En el primer caso, el del plano horizontal, hay una fuerza, a la que llamaremos Femáx tal que si la aumentásemos mínimamente, el cuerpo de masa m comenzaría a moverse.

Dibujo de la fuerza emáx en la fuerza de rozamiento (o de fricción)

En el segundo caso, al aumentar la inclinación del plano, llegaríamos a un ángulo θ tal que si lo aumentásemos también mínimamente, el cuerpo comenzaría a desplazarse. La componente del peso en la dirección del plano también la llamamos Femáx y su valor es mg · sen θ.

Dibujo de la fuerza de rozamiento estático en un plano inclinado

Se ha alcanzado el llamado ángulo crítico o ángulo de rozamiento.

Como hemos dicho antes, la fuerza de rozamiento estático es directamente proporcional a la fuerza normal.

A esta proporcionalidad, al coeficiente que relaciona las dos magnitudes le llamaremos coeficiente de rozamiento estático que tendrá el símbolo: μe.

Fórmula 1 de la fuerza de rozamiento estático en un plano inclinado

El coeficiente de rozamiento estático, o μe será la tangente del ángulo crítico θ.

Fórmula 2 de la fuerza de rozamiento estático en un plano inclinado

Ver ejercicio de coeficiente de rozamiento estático

Coeficiente de rozamiento dinámico (o coeficiente de rozamiento cinético)

ANUNCIOS


Cuando la fuerza actuante sobre el peso supera a la de rozamiento, el cuerpo empieza a moverse, bajando en ese instante ligeramente el valor de la fuerza de rozamiento, que ahora se llamará fuerza de rozamiento cinético (o fuerza de fricción por deslizamiento). La fricción ha modificado ligeramente a nivel microscópico las superficies de contacto, rompiéndose cantidades de asperezas moleculares de masa despreciable. Ahora estamos ante el coeficiente de rozamiento dinámico (o cinético) μd, que es menor que el coeficiente de rozamiento estático.

Ver ejercicio de coeficiente de rozamiento dinámico

Leyes de la fuerza de rozamiento

  • La fuerza de rozamiento depende directamente de la fuerza normal que se ejerce entre las superficies en contacto.
  • Depende del tipo de material de las superficies, temperatura y de su acabado.
  • No depende de la dimensión de la superficie de contacto.
  • No depende de la velocidad de deslizamiento.
  • La dirección de la fuerza de rozamiento es de igual dirección pero de sentido contrario al desplazamiento del cuerpo.
  • Para un mismo par de materiales, la fuerza de rozamiento es mayor en el preciso momento de iniciar el movimiento que cuando el desplazamiento ya se está produciendo.

Tabla de valores de los coeficientes de rozamiento

Aquí aparecen los valores medios de μe y de μd.

Tabla de valores de los coeficientes de rozamiento

Ejercicio del coeficiente de rozamiento estático

Dibujo de un ejemplo de fuerza de rozamiento estático

Tratan de mover una caja de 20 kg de peso tirando con una cuerda que forma 30° con la superficie horizontal ejerciendo con ella una fuerza de 50 N. Si se sabe que el coeficiente de rozamiento estático entre los dos materiales es μe = 0,26, averiguar si con esta fuerza y con este ángulo va a poder arrastrarse la caja.

Solución:

En la figura aparece el planteamiento del problema con las fuerzas que están en juego. La fuerza de 50 N se descompone en una componente horizontal FH y una componente vertical FH. El cálculo de estas componentes es el siguiente:

Cálculo de los componentes en un ejemplo de rozamiento estático

La fuerza normal FN, vertical, resultante de la reacción a la fuerza peso mg y de la componente vertical FN = 25 N no produce aceleración vertical, ya que es menor y opuesta a mg.

El cálculo de esta FN es el siguiente:

Cálculo de de la fuerza normal en un ejemplo de rozamiento estático

Sabemos que el coeficiente de rozamiento estático viene dado por una fórmula, que permitirá calcular la fuerza de rozamiento estática que se opone al movimiento de la caja:

Cálculo de de la fuerza de rozamiento estático en un ejemplo de rozamiento estático

Como la fuerza de rozamiento estático tiene un valor de 44,52 N, que es superior a la componente horizontal de la fuerza de tracción de magnitud 43,30 N, la fuerza de 50 N ejercida con la cuerda no conseguirá mover la caja.

Ejercicio del coeficiente de rozamiento dinámico

Dibujo de un ejemplo de coeficiente de rozamiento dinámico

En un entrenamiento, un portero de hockey sobre hielo golpea el disco de caucho con el palo de hockey desde su línea de gol hacia la portería contraria. El puck (disco) tiene una superficie de contacto de 24 cm2 y un peso de 160 gr. El golpeo con el stick le imprime al disco una velocidad inicial de 15 m/s. El rozamiento con el hielo hace que el disco vaya frenándose hasta pararse justo en la línea de gol contraria, a 61 m. Con estos datos, hallar el coeficiente de rozamiento dinámico del caucho con el hielo.

Solución:

Para aplicar la Segunda Ley de Newton veamos la resultante de las fuerzas que actúan sobre el disco:

Dibujo de las fuerzas del disco en un ejemplo de coeficiente de rozamiento dinámico

La fuerza normal FN y la fuerza peso mg son iguales y de sentido contrario (Tercera Ley de Newton) por lo que sobre el disco en desplazamiento solamente actúa la fuerza de rozamiento dinámico. Frd,vector de sentido contrario al vector velocidad.

Y sabemos que:

Cálculo del F sub rd 1 en un ejemplo de coeficiente de rozamiento dinámico

Durante el desplazamiento del disco por la pista, y según la Segunda Ley de Newton:

Cálculo del F sub rd 2 en un ejemplo de coeficiente de rozamiento dinámico

Por lo que:

Cálculo del mu sub d en un ejemplo de coeficiente de rozamiento dinámico

Como conocemos la velocidad inicial del disco y la distancia recorrida hasta detenerse, podemos hallar la aceleración negativa constante mediante las ecuaciones del movimiento rectilíneo uniformemente acelerado (MRUA):

Cálculo de la aceleración en un ejemplo de coeficiente de rozamiento dinámico

Sabiendo el valor de a, podemos calcular directamente el coeficiente de rozamiento dinámico (o coeficiente de rozamiento cinético), μd:

Solución de un ejemplo de coeficiente de rozamiento dinámico

El valor buscado del coeficiente de rozamiento dinámico es 0,19 m/s2.

SI TE HA GUSTADO, ¡COMPÁRTELO!

También te podría gustar...

1 respuesta

  1. melissa dice:

    esta muy interesante

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *