× NO BLOQUEES a Universo Formulas

¡Hola! Al parecer tienes en el navegador un bloqueador de anuncios (Adblocker, Ablock Plus,...) que impide que se visualicen nuestros anuncios.

Queremos recordarte que este proyecto vive únicamente de la publicidad y que sin estos ingresos no podremos seguir ayudándote.

No te pedimos que desinstales tu bloqueador de anuncios, sólo que no actúe en las páginas de nuestro dominio universoformulas.com y así podremos mostrarte nuestros bloques de anuncios.

Icono de AdBlock Icono de AdBlock Plus Icono de UBlock Icono de AdBlock Pro Icono de Fair AdBlock Icono de Adguard AdBlock

¡Gracias por todo y que sigas disfrutando de Universo Formulas!

Este aviso se cerrará automáticamente en 30 segundos.

Límites indeterminados cero por infinito

ANUNCIOS
1 estrella2 estrellas3 estrellas4 estrellas5 estrellas (Ninguna valoración todavía)
Cargando…

Usualmente ocurren en el producto de funciones del tipo:

Funciones en los límites indeterminados cero por infinito

Habitualmente, pueden resolverse operando, factorizando, simplificando y resolviendo.

Operaciones del ejemplo 1 en los límites indeterminados cero por infinito

Las raíces del primer polinomio son (+4, -1).

Operamos:

Operaciones 2 del ejemplo 1 en los límites indeterminados cero por infinito

Como se ve en la figura:

Gráfica del ejemplo 1 en los límites indeterminados cero por infinito

Otro caso es:

Funciones del ejemplo 1 en los límites indeterminados cero por infinito

En un primer paso, se introduce el primer término dentro del radical, convirtiéndose en otro tipo de indeterminación. Operamos:

Operaciones 1 del ejemplo 2 en los límites indeterminados cero por infinito

Dividimos por el término de mayor potencia y resolvemos:

Operaciones 2 del ejemplo 2 en los límites indeterminados cero por infinito

Como se ve en la figura:

Gráfica del ejemplo 2 en los límites indeterminados cero por infinito

ANUNCIOS


Otro tipo de límites con indeterminación 0 · ∞ requieren de la aplicación de la regla de L’Hôpital. Este es un caso:

Operaciones 1 del ejemplo 3 en los límites indeterminados cero por infinito

Para aplicar la regla de L’Hôpital se necesita convertir la expresión en un cociente para llegar a una indeterminación ∞/∞ o 0/0, por lo que se hace la transformación:

Operaciones 2 del ejemplo 3 en los límites indeterminados cero por infinito

Se ha llegado a otro límite indeterminado 0/0, al que se le puede aplicar la regla de L’Hôpital, derivando numerador y denominador por separado y obteniendo el límite buscado:

Operaciones 3 del ejemplo 3 en los límites indeterminados cero por infinito

Como se ve en la grafica:

Gráfica del ejemplo 3 en los límites indeterminados cero por infinito

SI TE HA GUSTADO, ¡COMPÁRTELO!

También te podría gustar...

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *