Límite por la derecha
Se denomina límite por la derecha (o límite lateral por la derecha), al que llamaremos L2 de una función f(x) definida en el intervalo abierto (a, b) y en un punto a, al valor que toma esta función f(x), cuando el valor de la variable x se acerca mucho a a, pero siendo x > a.
Se escribe:

Para cualquier valor tan pequeño δ > 0 se corresponde otro ε > 0, de manera que siempre que 0 < x – a < δ debe de cumplirse que: |f(x) – L1| < ε.
Para cualquier valor tan pequeño como se quiera y positivo δ > 0 se corresponde otro también positivo ε > 0, de manera que siempre que 0 < a – x < δ debe de cumplirse que: |f(x) – L2| < ε.

Veamos como los valores de x se aproximan a a (en el ejemplo de la tabla a– = 2) por la derecha y, al mismo tiempo, la función f(x) se aproxima por la derecha a L2.

AUTOR: Bernat Requena Serra
AÑO: 2018