Fórmula cuadrática

La fórmula cuadrática proporciona las raíces de una ecuación de segundo grado.

Dada una ecuación de segundo grado completa:

Expresión de un polinomio en cuadrática

Podemos obtener sus raíces con la fórmula cuadrática:

Fórmula cuadrática para ecuaciones de segundo grado

El número de soluciones depende del radical comprendido dentro del radicando de la raíz cuadrada. Se le llama discriminante y se representa con el signo Δ:

Discriminante en la fórmula cuadrática

Cuando el discriminante es positivo, hay dos soluciones diferentes:

Discriminante y soluciones mediante la fórmula cuadrática

Si el discriminante es nulo, hay dos soluciones iguales:

Discriminante nulo en la fórmula cuadrática

Pero si el discriminante es negativo, no hay solución real para ese caso:

Discriminante negativo en la fórmula cuadrática

La fórmula de Muller, poco utilizada, proporciona igualmente las raíces de una ecuación completa de segundo grado:

Fórmula de Muller

Demostración de la fórmula cuadrática

La demostración se basa en completar un trinomio cuadrado perfecto (o el cuadrado de un binomio), que es:

Trinomio cuadrado perfecto en la demostración

Pues, partiendo de la forma general de una ecuación de segundo grado, se pasa el término independiente a la otra parte de la igualdad y se divide todo por el coeficiente a:

Término independiente en la demostración

Se le añade a los dos miembros de la igualdad el término necesario para que en el primer miembro quede un trinomio cuadrado perfecto:

Igualdad de términos en la demostración

En el miembro de la izquierda se ha obtenido el cuadrado de un binomio. Se opera en el miembro de la derecha:

Cuadrado de un binomio en la demostración

Se extrae la raíz cuadrada de los dos miembros de la igualdad y se despeja la x:

Raíz cuadrada en la demostración

Demostrada la fórmula general de la solución de una ecuación completa de segundo grado, llamada fórmula cuadrática.

Relación entre los coeficientes y las soluciones

A partir de la fórmula cuadrática, si sumamos las soluciones:

Suma de las soluciones en la fórmula cuadrática

Y si hacemos el producto de las soluciones:

Producto de las soluciones en la fórmula cuadrática

En el numerador tenemos dos binomios, suma por diferencia, que es la diferencia de cuadrados. Operamos, simplificamos y nos queda:

Numerador en la fórmula cuadrática

La suma de las soluciones de una ecuación de segundo grado es S = -b/a y el producto P = c/a.

Estas relaciones permiten escribir ecuaciones de segundo grado, partiendo de dos soluciones conocidas x1 y x2, dándole valores reales arbitrarios al coeficiente a:

Valores reales en la fórmula cuadrática

Si hiciésemos a = 1:

Valores reales con a=1 en la fórmula cuadrática

Ejercicios

Ejercicio 1

Dada la ecuación de segundo grado completa:

Igualando a 0 en el ejercicio 1

Encontrar el número de raíces y, si las tuviere, su tipo.

Solución:

Se aplica la fórmula cuadrática a sus coeficientes:

Fórmula cuadrática en el ejercicio 1

El discriminante Δ = 81 es positivo. La ecuación tiene dos raíces reales y distintas. Resolvamos la fórmula cuadrática:

Solución en el ejercicio 1

Las dos raíces, distintas y reales, son –1/2 y –5.

Ejercicio 2

Dada la ecuación de segundo grado completa:

Enunciado del ejercicio 2

a) Encontrar el número de raíces y, si las tuviere, su tipo.

b) Representación gráfica.

Solución:

a) Se aplica la fórmula cuadrática a sus coeficientes:

Coeficientes del ejercicio 2

El discriminante Δ = 0. La ecuación tiene dos raíces reales e iguales. Resolvamos la fórmula cuadrática:

Resolución del ejercicio 2

Las dos raíces iguales, son 2 y 2.

b) La gráfica es una parábola vertical, dirigida hacia arriba, porque el coeficiente a es positivo. Corta al eje X en un punto:

Gráfica del ejercicio 2

Ejercicio 3

Dada la ecuación de segundo grado completa:

Enunciado del ejercicio 3

a) Encontrar el número de raíces y, si las tuviere, su tipo.

b) Representación gráfica.

Solución:

a) Se aplica la fórmula cuadrática a sus coeficientes:

Coeficientes del ejercicio 3

El discriminante Δ = -8. Es negativo. La ecuación no tiene dos raíces reales.

b) La representación gráfica es una parábola vertical dirigida hacia arriba, porque a es positivo. No corta el eje X:

Gráfica del ejercicio 3

El eje de simetría es vertical en:

Eje de simetría del ejercicio 3

Ejercicio 4

Se sabe que -1 y 2 son las raíces de una ecuación de segundo grado. Proponer dos ecuaciones que satisfagan estas soluciones.

Solución:

Partiendo de la relación entre los coeficientes y las soluciones, en concreto entre la suma S y el producto P de las raíces, una ecuación cuadrática se puede escribir así:

Enunciado del ejercicio 4

Dando arbitrariamente al coeficiente a los valores 1 y 2 obtenemos estas dos ecuaciones cuadráticas equivalentes que satisfacen las soluciones propuestas por el ejercicio:

Coeficientes del ejercicio 4

Comprobación del resultado:

Resultado del ejercicio 4

Satisfacen las dos ecuaciones.

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Scroll al inicio