Resolver ecuaciones lineales

Para resolver ecuaciones lineales con una incógnita:

  • Se agrupan los términos con la variable a la izquierda de la igualdad y los términos libres a la derecha. Los términos que pasan a otra parte, cambian de signo.
    Paso de la variable a la izquierda en la resolución de ecuaciones lineales

    Cabe remarcar que es igualmente válido hacer la agrupación de la variable a la derecha y de los números a la izquierda, pero nos vamos a centrar en el otro caso.

  • Si hay paréntesis, el elemento que multiplica o divide al paréntesis se multiplicará o dividirá por los elementos que hay dentro del paréntesis.
    Multiplicación por elementos de un paréntesis en la resolución de ecuaciones de primer grado
  • Cuando hay fracciones, se transforman todos los términos para que tengan un común denominador. Para ello se buscará el mínimo común múltiplo (ver operaciones con fracciones).
    Fracciones en la resolución de ecuaciones de primer grado

    En este caso el mínimo común múltiplo (m.c.m.) de los denominadores es 12. Se reduce a común denominador. Operando, se eliminan los denominadores:

    Eliminar denominadores en la resolución de ecuaciones lineales
  • El coeficiente del término de la variable aislada, si está multiplicando, pasa dividiendo y viceversa. Y con el mismo signo.
    Paso del término dividiendo en la resolución de ecuaciones de primer grado
  • Una vez aislada la incógnita, se puede hallar la solución.
    Solución en la resolución de ecuaciones lineales
  • Conviene siempre comprobar la solución, colocándola en la primera ecuación en el lugar de la incógnita.
    Comprobación de la solución en la resolución de ecuaciones de primer grado

Una ecuación de primer grado puede tener una solución:

Una solución en la resolución de ecuaciones de primer grado

Ninguna:

Ninguna solución en la resolución de ecuaciones lineales

Ningún valor de x satisface la ecuación.

O admitir cualquier solución:

Cualquier solución en la resolución de ecuaciones de primer grado

Esta ecuación, en realidad sería una identidad.

Ejercicio

Resolver esta ecuación de primer grado con una incógnita:

Enunciado del ejercicio 1

Solución:

Se reducen todos los términos a común denominador. El mínimo común múltiplo de 3, 2 y 5 es 30:

Común denominador del ejercicio 1

Multiplicando todos los términos por 30, se eliminan los denominadores y la igualdad se mantiene:

Eliminar denominadores del ejercicio 1

Se eliminan los paréntesis, multiplicando los factores de cada uno por sus elementos interiores:

Eliminar paréntesis del ejercicio 1

Se agrupan los términos con la variable a la izquierda de la igualdad y los términos libres a la derecha. Los términos que pasan a otra parte, cambian de signo. Una vez agrupados, se opera:

Agrupando términos del ejercicio 1

El coeficiente del término de la variable aislada, si está multiplicando, pasa dividiendo y viceversa. Y con el mismo signo. Una vez aislada la incógnita, se puede hallar la solución:

Solución del ejercicio 1

La solución es 5. Se comprueba el resultado en la ecuación original.

Comprobación de la solución del ejercicio 1

La solución es correcta.

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Scroll al inicio