Media geométrica

ANUNCIOS

La media geométrica (MG) de un conjunto de números estrictamente positivos (X1, X2,…,XN) es la raíz N-ésima del producto de los N elementos.

Fórmula de la media geométrica

Todos los elementos del conjunto tienen que ser mayores que cero. Si algún elemento fuese cero (Xi=0), entonces la MG sería 0 aunque todos los demás valores estuviesen alejados del cero.

Dibujo de la media geométrica

La media geométrica es útil para calcular medias de porcentajes, tantos por uno, puntuaciones o índices. Tiene la ventaja de que no es tan sensible como la media a los valores extremos.

Ejercicios

ANUNCIOS


Ejercicio 1

En una empresa quieren saber la proporción media de mujeres en los diferentes departamentos. Para ello, se recoge el porcentaje de mujeres en los cinco principales departamentos.

Tabla del porcentaje de mujeres en los cinco principales departamentos de una empresa

Como es la media de porcentajes, calculamos la media geométrica que es más representativa.

Cálculo de la media geométrica del porcentaje de mujeres por departamento de una empresa
Dibujo en barras del cálculo de la media geométrica del porcentaje de mujeres en los cinco principales departamentos de una empresa

Ejercicio 2

Una aldea sufre un proceso rápido de envejecimiento. El primer año aumentan los mayores de 65 años un 10%, el segundo año, un 20%, el tercer año un 30% y el cuarto año, un 40%.

Si la población de inicial es de 100 mayores de 65 años, ¿cuál será un mejor indicador para caracterizar ese envejecimiento: la media aritmética o la media geométrica?

Solución:

Sabemos que para llegar a la cifra final al cabo de los cuatro años, debemos acumular sucesivamente los porcentajes anuales:

Cálculo de la población mayor de 65 años en el ejemplo 2 de media geométrica

Tras el cuarto año, en la aldea hay 240 personas con más de 65 años.

Si calculamos la media aritmética de los porcentajes de incremento anual, obtendremos:

Cálculo de la media aritmética en el ejemplo 2 de media geométrica

Si esta media aritmética la acumulamos a los cuatro años:

Cálculo de la media aritmética en el ejemplo 2 de media geométrica

El resultado obtenido excede a la realidad.

Pero si hubiésemos empleado la media geométrica de los incrementos anuales:

Cálculo de la media geométrica en el ejemplo 2 de media geométrica

Llegamos a un porcentaje anual obtenido con la media geométrica del 24,02%.

Calculamos la población final a partir de este último indicador, acumulándolo a los cuatro años.

Cálculo final de la media geométrica en el ejemplo 2 de media geométrica

Obtenemos el resultado final exacto. Por lo que resulta más representativa, trabajando con porcentajes, la media geométrica que la aritmética:

Relación entre medias

Existe una relación de orden entre cuatro tipos de media. En esta relación se excluye la media ponderada porque depende de los pesos. Sean:

Entonces:

Fórmula de la relación entre la media armónica, media geométrica, media aritmética y media cuadrática

En esta relación, solamente se cumple la igualdad cuando todos los datos sean iguales, es decir si: x1 = x2 = x3 = … = xN.

Se da la siguiente relación, en el caso de distribuciones de solamente dos datos, sean estos los que sean:

Fórmula de la relación entre la medias cuando hay dos datos

Cuando en la distribución hay solamente dos datos, la media geométrica es la media geométrica entre la media aritmética y la media armónica.

Esta relación se convierte en una aproximación, cuando, habiendo múltiples valores, estos están muy agrupados en torno a la media.

Fórmula por aproximación con múltiples factores de la relación entre la medias

AUTOR: Bernat Requena Serra

AÑO: 2014


SI TE HA GUSTADO, ¡COMPÁRTELO!

También te podría gustar...

26 Respuestas

  1. Ayelen dice:

    Una panificadora abastece de medialunas a las confiterías y bares de la zona durante 25 días al mes. En el mes de mayo las ventas fueron de 50 docenas diarias, pero para cubrir la demanda, las ventas deben aumentar un 60% en 19 meses. ¿A qué tasa promedio mensual deberán crecer las ventas para alcanzar el objetivo?

  2. Sofia dice:

    Me podrias ayudar con este ejercicio?

    Una panificadora abastece de medialunas a las confiterías y bares de la zona durante 25 días al mes. En el mes de mayo las ventas fueron de 50 docenas diarias, pero para cubrir la demanda, las ventas deben aumentar un 60% en 19 meses. ¿A qué tasa promedio mensual deberán crecer las ventas para alcanzar el objetivo?

  3. leonel dice:

    me puede explicar el primer ejercicio

    • Respuestas dice:

      Es la obtención de la media geométrica de N datos en forma de porcentages.
      Raíz N-ésima del producto de N elementos

  4. santiago Ascanio Torrado dice:

    Un fabricante de llaves roscadas tiene ventas de 9 referencias así: R1; R2; R3, R4; R5, R6, R7, R8, R9 generando una utilidad estimada por producto de $20, $30, $40, $44, $45, $46, $47, $48 y $49 además tiene pedidos diarios de 100, 120, 130, 135, 136, 137, 138, 140, 143.

    El fabricante está evaluando la posibilidad de aumentar los pedidos de las referencias R4 y R5 a 200 y 215, las demás referencias las continúa vendiendo en las mismas cantidades.
    Tabule la información y desarrolle aplicando la fórmula para dar solución con su respectiva interpretación si le conviene o no le conviene ese esfuerzo en sus ventas. De acuerdo a las dos opciones.

    • Respuestas dice:

      R1 20 100 2000 100 2000
      R2 30 120 3600 120 3600
      R3 40 130 5200 130 5200
      R4 44 135 5940 200 8800
      R5 45 136 6120 215 9675
      R6 46 137 6302 137 6302
      R7 47 138 6486 138 6486
      R8 48 140 6720 140 6720
      R9 49 143 7007 143 7007
      $49375 $55790
      Dif $6415

  5. Carolina dice:

    Se estima que la zona metropolitana de los Angeles – Long Beach, en California mostrará el mayor aumento en el número de empleos entre los años 1989 y 2010. Es de esperar que el número de empleos aumente de 5164900 hasta 6286800. Cuál es la tasa de incremento anual media geométrica esperada?

    • David Antebi dice:

      En el ejercicio 2 están equivocados por dos razones.

      1. Los cuatro valores del conjunto son: 10%,20%,30%,40%, de ser así lo que hay que hacer es multiplicar: 10*20*30*40=240.000
      Al igual que en el ejercicio 1 que se multiplicó los 5 valores de los porcentajes de los departamentos. Luego de eso se saca la raíz n(4) de 240.000 que da el resultado de 22,1336.
      quiere decir que esa es la media geométrica del incremento anual de la población.
      Ahora si multiplicamos 100*1,221336*1,221336*1,221336*1,221336 nos va a dar como resultado: 222,50 y nos falta mucho para el resultado correcto que es 240,24
      De ser así la conclusión es que no debemos utilizar la media geométrica para obtener el resultado final de la población (la media geométrica no cumple esa función tampoco)

      2. Aún que tengan razón en hacer la ecuación como la hicieron [1,1*1,2*1,3*1,4] no da como resultado de la media geométrica lo que ustedes mencionaron [1,2402] sino que da: 1,2449
      Es muy simple, 1,1*1,2*1,3*1,4=2,4024
      2,4024^(1/4)= 1,2449

      Ahora si multiplicamos con este valor el resultado nos va a salir 240,18 que realmente es lo más cerca al resultado verdadero de 240,24.

      Es más! La ecuación que hicieron de 100*1,2402*1,2402*1,2402*1,2402 da como resultado 236,57 !!!
      No de necesita más que una calculadora hombre!
      Por favor!!

    • Respuestas dice:

      MGesp = {(6286800 /5164900) elevado a [1 / (2010 – 1989)]} y le restas 1
      Resultado 0,0095
      Es decir, el incremento anual media geométrica resulta del 0,95%
      La potencia 1/(2010-1989) = 1 / 21 es lo mismo que la raíz 21ésima.

  6. melissa dice:

    Cómo puedo calcular la media geometrica, excluyendo los extremos (valor minimo y maximo)?

  7. 1421441 dice:

    115224212545556+5+522053

    7764+41154+64+97744+54987811+4+97+451324897+746+974+4144+4534+44+97+79+464+6464+64+64+646+46+4+46+4+687+68+686+8+687+7874+979+74+9749+7+2.5451257+441475625+44779+7+979+7+974+49+4+94+9461216+5323
    216+5
    21+62
    1
    31
    .0
    3.013
    1
    313
    13
    13
    1+416+46+4+ el que me dice cuanto es Os mando lo que ustedes pídais 😀 porfa es para punto extras

  8. ruben dice:

    ¿podrías explicar por qué es más representativa la media geométrica con los porcentajes?

    • Respuestas dice:

      Es menos sensible a valores extremos y en porcentajes sucesivos (p.ej. beneficios en una empresa en años sucesivos) no distorsiona el resultado, como sí lo haría la media aritmética.

  9. Anairam dice:

    Este tipo de articulos me ayudan muchisimi en mis tareas, por que en otras explicacione solo me enredo en algunos terminos que aun no comprendo. gracias por hacerlo asi .

  10. sulay dice:

    excelente todo debe ser asi , practico y concreto

  11. El Remington de D U R A N G O dice:

    ..a PRIORI y a posteriori, SACA de dudas la ESTADISTICA DESCRIPTIVA su Tratamiento la Recopilacion de las variables categoricas, TABLAS CUADROS, Frecuencias OJIVAS e Curvas S, Gracias

  12. RODOLFO REYES R dice:

    Gran MOMENTO en las Intervenciones DIDACTICAS,.. hay SECUENCIAS Didacticas e APRENDIZAJES,…Asignatura de PROBABILIDAD y ESTADISTICA

  13. Kevin dice:

    Muchas gracias, me sirvió realmente mucho!

  14. silvia nickerson dice:

    Sus explicaciones y ejemplo son muy claros y didacticos. gracias

  1. 16 noviembre, 2017

    Such a nice blog.

    I have read an amazing article here.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *