Un histograma es una representación gráfica de datos agrupados mediante intervalos. Los datos provienen de una variables cuantitativas continuas. Gracias a él puedes hacerte rápidamente una idea de la distribución de los datos o muestra.
También cabe emplear variables cualitativas ordinales, siendo necesario que el número de datos sea alto.
Un histograma es un conjunto de barras rectangulares verticales que su altura es proporcional a las frecuencias absolutas de cada uno de los intervalos (también se pueden representar las frecuencias relativas o frecuencias relativas porcentuales).
Los intervalos abarcan todo el conjunto sin cortarse, de manera que un elemento está solo en un intervalo. La base de cada barra vertical es proporcional a la amplitud del intervalo.

Construcción de un histograma
Para construir un histograma es necesario previamente construir una tabla de frecuencias. Lo construiremos siguiendo los siguientes pasos:
- En el eje de abscisas (eje horizontal) se colocan los intervalos, de menor a mayor.
- En el eje de ordenadas (eje vertical) se representan las frecuencias absolutas de cada uno de los intervalos. También se suelen representar las frecuencias relativas.
- Se dibujan barras rectangulares de anchura igual y proporcional al intervalo. La altura es la frecuencia absoluta. Las barras rectangulares se dibujan adyacentes la una a la otra, pero no intersectan entre ellas. Por tanto, todas las barras tocan con las de al lado, a no ser que un intervalo tenga frecuencia cero (la altura de la barra será también cero).
Ejemplo
En una ciudad se realiza un estudio para observar la distribución de la población según la edad. La ciudad tiene censados 1.324.861 habitantes.
Para el estudio de la distribución de las edadesse va a construir un histograma en grupos decenales (intervalos de diez años).
- En el eje de abscisas se colocan los intervalos de edades (grupos decenales).
- En el eje de ordenadas se representa el número de personas que tienen ese rango de edad en la fecha del estudio (frecuencias absolutas).
- Se dibujan rectángulos de anchura igual y proporcional al intervalo (en nuestro caso todos tendrán la misma anchura) y de altura igual a la frecuencia absoluta.
El histograma resultante será el siguiente:

Polígono de frecuencias asociado a un histograma
Un polígono de frecuencias es un gráfico que se utiliza para variables cuantitativas discretas. Se representa mediante puntos que señalan la frecuencia absoluta de cada valor y líneas que unen los puntos consecutivos.
Se puede dibujar un polígono de frecuencias a partir de un histograma. Para ello se deben unir los puntos medios de las bases superiores de los rectángulos.

También se puede construir un histograma o su polígono de frecuencias, colocando en ordenadas las frecuencias acumuladas.
Histogramas con intervalos de diferente longitud
En algunas ocasiones, es necesario contruir un histograma con los intervalos de diferente longitud, ya que a nosotros como investigadores nos interesa, o directamente, los datos vienen así.
El histograma debería representar la frecuencia de cada intervalo con el área de la barra y no con su altura. En el caso de que todos los intervalos tengan el mismo tamaño, esto no supone un problema, ya que la altura de la barra rectangular es proporcional a la frecuencia del intervalo. Pero cuando tenemos intervalos de diferentes tamaños, esto cambia, y hay que adaptar la altura de la barra según sea la anchura del intervalo.
Para obtener la altura de los diferentes intervalos dependiendo de su longitud, se utiliza la fórmula siguiente:

Donde Ab es la altura del intervalo, FI es la frecuencia del intervalo, LI es la longitud del intervalo y Lmin la longitud mínima de de todos los intervalos.
Todo esto lo veremos mejor en un ejemplo. Tenemos los datos de la población de una ciudad agrupados por edad (los datos son del ejemplo anterior).
Los datos se agrupan en cuatro intervalos de longitud de diez años (0-9, 30-39, 40-49 y 50-59), un intervalo de longitud veinte años (10-29) y un intervalo de treinta años (60-89). Por lo tanto, la longitud del intervalo mínimo es 10, (Lmin = 10). A partir de Lmin, sacamos las alturas de las barras rectangulares de cada intervalo, Ab.

Si dibujamos el histograma, obtenemos:

Pingback: Estadística Descriptiva – Definicion
GRACIAS, MU COMPLETO
Saludos, la explicación es concreta y clara, pero me parece le hace falta integrar en el proceso para elaborar un histograma pasos:
Como determino el número de intervalos?
Qué es una frecuencia Relativa y para que se usa?
Diferencia entre valores cualitativos y cuantitativos
muchas gracias
no sirve
En que estudios sirven los histogramas ?
Un histograma es una representación gráfica de datos agrupados mediante intervalos. Los datos provienen de una variables cuantitativas continuas. Gracias a él puedes hacerte rápidamente una idea de la distribución de los datos o muestra.
También cabe emplear variables cualitativas ordinales, siendo necesario que el número de datos sea alto.
Un histograma es un conjunto de barras rectangulares verticales que su altura es proporcional a las frecuencias absolutas de cada uno de los intervalos (también se pueden representar las frecuencias relativas o frecuencias relativas porcentuales).
No entendí nada, no me gusto
No hay información para citar su trabajo 🙁
Gracias universo formulas , ya entendí
no entiendo nada pero al menos hice mi tarea ; )
Esta respuesta me alegro el día, yo aún no la termino 🙁
Gracias brou.
Me helpearon muxho.
Es muy chingonométrico.
Genial!!! Solo que yo no lo entendí!!! 😉
Muy bn
Muchas gracías. Encantada!
muy sencillo pero muy explicativos los esquemas gracias
no creo, saludos 9 años después…👋