Movimiento parabólico

ANUNCIOS

Dibujo del movimiento parabólico

El movimiento parabólico es el movimiento de una partícula o cuerpo rígido describiendo su trayectoria una parábola. Por ejemplo, el balón de fútbol cuando es chutado por un jugador y cae al suelo es un movimiento parabólico.

El movimiento parabólico se puede analizar como la unión de dos movimientos. Por un lado, la trayectoria en la proyección del eje de las x (el eje que va paralelo al suelo) describirá un movimiento rectilíneo uniforme. Por otro lado, la trayectoria de la partícula al elevarse o caer verticalmente (en proyección sobre el eje de las y) describirá un movimiento rectilíneo uniformemente acelerado, donde la aceleración es la gravedad.

Dibujo del movimiento parabólico viendo el movimiento rectilíneo uniforme (coordenada x) y el movimiento rectilíneo uniformemente acelerado (coordenada y)

Nota: la gravedad normalmente se considera g = 9.81 m/s2.

ANUNCIOS


Para hacernos una idea visual de los dos componentes del movimiento parabólico, imaginemos un lanzamiento de peso de atletismo.

Si pudiésemos seguir el recorrido de la bola verticalment desde arriba, en el mismo plano vertical de la trayectoria, desde esa posición privilegiada veríamos la bola avanzar a una velocidad constante, desde la salida de la mano del atleta hasta que la bola toca el césped. Apreciaríamos un movimiento rectilíneo uniforme (velocidad constante).

Pero si nos pudiésemos situar sobre el césped, detrás de donde se ubican los jueces y que estuviésemos también justo en el plano vertical de la trayectoria (es decir, que lanzase hacia nosotros) nos daría la impresión de que la bola sube y baja como si se tratase de un lanzamiento vertical hacia arriba (movimiento rectilíneo uniformement acelerado).

Una de las aplicaciones más importantes del movimiento parabólico es la balística. La balística es la ciencia que estudia la trayectoria de las balas o proyectiles. Ciertos proyectiles son lanzados desde un cañón con un ángulo determinado calculado para que el proyectil recorra una parábola e impacte en el objetivo esperado.

(Nota: estudiamos aquí el movimiento parabólico aplicado a la balística desde un punto de vista teórico. En la práctica, la balística debe de corregir los cálculos en función de otros factores, como el rozamiento del proyectil con la atmósfera, el viento, la presión atmosférica, la esfericidad y la rotación de la tierra, etc.).

Tipos de movimiento parabólico

Existen diferentes tipos de movimiento parabólico dependiendo desde donde empieza o acaba el movimiento del cuerpo. Por ejemplo:

  • Movimiento parabólico completo: el cuerpo recorre una parábola completa, empezando y acabando en el suelo.
  • Movimiento de media parábola: el cuerpo empieza el movimiento desde cierta altura y es lanzado parabólicamente con una fuerza horizontal, en un punto que sería el punto más alto de la parábola completa ideal.
  • Otros movimientos parabólicos: existen muchos casos particulares del movimiento parabólico, por ejemplo el lanzamiento de una pelota desde el suelo a la terraza de una casa o el lanzamiento a canasta de un jugador de baloncesto. Siempre son tramos de una teórica parábola completa.

Todos los elementos de los movimientos parabólicos se pueden calcular a partir del movimiento parabólico completo.

Dibujo de los tipos de movimiento parabólico

Velocidad

Dibujo de la velocidad en el movimiento parabólico

La velocidad inicial del cuerpo (v0) tiene dos componentes, la componente horizontol, en el eje x y la componente vertical, en el eje vertical y. Depende de la fuerza con la que salga la partícula y el ángulo de lanzamiento.

Fórmula de la velocidad inicial en el movimiento parabólico

La componente horizontal de la velocidad x será constante, ya que es un movimiento uniforme. La componente vertical de la velocidad y disminuye inicialmente por la gravedad, hasta hacerse nula en el punto más alto de la trayectoria. A partir de ese punto, vuelve a crecer uniformemente acelerada por la gravedad. La fórmula de la velocidad es:

Fórmula de la velocidad en el movimiento parabólico

Aceleración

Dibujo de la aceleración en el movimiento parabólico

La aceleración solamente está presente en la componente vertical. El movimiento horizontal es uniforme mientras que sobre la componente y influye la aceleración de la gravedad, que hace que se frene el cuerpo (en el caso de que esté subiendo) hasta volver a acelerarse al descender y caer al suelo.

Fórmula de la aceleración en el movimiento parabólico

Posición

En la posición del objeto también intervienen las fórmulas de la posición del movimiento rectilíneo uniforme (sentido horizontal) y la posición del movimiento rectilíneo uniformemente acelerado (sentido vertical).

Fórmula de la posición en el movimiento parabólico

Altura máxima

Dibujo de la altura máxima en el movimiento parabólico

En el movimiento parabólico, existe un punto (y sólo un punto) donde la partícula se encuentra en el punto más alto de su trayectoria.

En ese punto, la componente vertical de la velocidad es nula.

La fórmula para determinar la altura máxima no depende del tiempo.

Fórmula de la altura máxima en el movimiento parabólico

A igual velocidad inicial y aceleración de la gravedad, la altura máxima de una trayectoria parabólica dependerá del ángulo θ de la velocidad inicial v0.

La máxima altura que se puede alcanzar con una velocidad v0 determinada se corresponde con un ángulo de lanzamiento θ = 90°.

Alcance horizontal máximo

Dibujo del alcance horizontal máximo en el movimiento parabólico

La partícula o cuerpo llegará a su alcance horizontal máximo cuando caiga al suelo, es decir, cuando y sea cero. Podemos calcular el alcance sin saber el tiempo que ha tardado en recorrer la parábola la partícula o conociéndolo.


  • Fórmula del alcance siendo el tiempo de trayectoria de la partícula desconocido

    Fórmula del alcance horizontal máximo sin saber el tiempo total de trayectoria en el movimiento parabólico

    (Para comprovar la deducción de esta fórmula,consultar razones trigonométricas del ángulo doble)

    El alcance máximo que se podrà lograr con un proyectil (a igual velocidad inicial v0), será con un ángulo θ = 45°.

    Por ejempo, se obtendrá el mismo alcance horizontal para ángulos de lanzamiento θ = 45° ± m. El proyectil tendrá el mismo alcance, tanto si se lanza con ángulos θ = 45° ± 15°, es decir θ = 30° y θ = 60°, ya que sen(2 · 30°) = sen(2 · 60°). Idénticos alcances se obtendrán con ángulos θ = 45° ± 30°, es decir θ = 15° y θ = 75°, puesto que sen(2 · 15°) = sen(2 · 75°). Y es que en la fórmula interviene sen(2θ). Pero, insistimos, el alcance máximo se logra con θ = 45°.

  • Fórmula del alcance siendo el tiempo de trayectoria de la partícula conocido (tt)

    Fórmula del alcance horizontal máximo sabiendo el tiempo total de trayectoria en el movimiento parabólico

Llamamos tiempo de vuelo (Tvuelo) al que invierte el cuerpo o el proyectil en realizar el movimiento completo hasta llegar a tierra, es decir a la misma altura del punto de salida.

Fórmula del tiempo de vuelo en el movimiento parabólico

Ejercicio resuelto del movimiento parabólico

Ejercicio 1

Un portero saca el balón desde el césped a una velocidad de 26 m/s. Si la pelota sale del suelo con un ángulo de 40° y cae sobre el campo sin que antes lo toque ningún jugador, calcular:

  • Altura máxima del balón
  • Distancia desde el portero hasta el punto donde caerá en el campo
  • Tiempo en que la pelota estará en el aire

SOLUCIÓN:

Resolveremos el problema de dos maneras: aplicando directamente las fórmulas específicas o, en segundo lugar, partiendo de las ecuaciones de los dos movimientos, MRU y MRUA.

En primer lugar, descomponemos la velocidad inicial en sus componentes. La componente horizontal de la velocidad será:


Cálculo de la componente horizontal de la velocidad en el ejercicio 1 por el método 1

La componente vertical de la velocidad inicial será:


Cálculo de la componente vertical de la velocidad inicial en el ejercicio 1 por el método 1

La altura máxima será:


Cálculo de la altura máxima en el ejercicio 1 por el método 1

El alcance del saque del portero será:


Cálculo del alcance del saque del portero en el ejercicio 1 por el método 1

Calcularemos el tiempo de vuelo de la pelota:


Cálculo del tiempo de vuelo de la pelota en el ejercicio 1 por el método 1

Ahora vamos a resolver el mismo problema, pero partiendo de las fórmulas de los dos movimientos componentes del movimiento parabólico: el movimiento rectilíneo uniforme (MRU), que se corresponde con el eje horizontal, y el movimiento rectilíneo uniformemente acelerado (MRUA), que se corresponde con el eje vertical. Recordemos que la aceleración aquí es la aceleración de la gravedad g, con valor -9,81 m/s2 (signo negativo por ser el sentido de la gravedad contrario al de la componente vertical de la velocidad inicial v0y).

En el punto en que el balón alcanza la altura máxima, su componente de velocidad vertical será vy = 0 m/s, ya que deja de subir y empieza a descender. Aplicamos la fórmula de la velocidad en el movimiento rectilíneo uniformemente acelerado (MRUA). En este caso será:


Cálculo de la componente vertical de la velocidad en el ejercicio 1 por el método 2

Como vy = 0:


Cálculo del tiempo en llegar el balón al punto más alto en el ejercicio 1 por el método 2

Tiempo que tarda en llegar el balón a su punto más alto. Ahora aplicamos la ecuación del espacio en el MRUA, para averiguar la altura máxima, sabiendo el tiempo que ha invertido en llegar a ella:


Cálculo de la altura máxima en el ejercicio 1 por el método 2

Nos queda saber el alcance. Como el movimiento parabólico es simétrico, tardará lo mismo en llegar al punto más alto que luego, desde allí, bajando llegar a tocar el césped, es decir 1,7 · 2 = 3,4 seg.

Aplicamos la fórmula del espacio del MRU, por más sencilla, que en este caso será:


Cálculo del espacio vertical recorrido en el ejercicio 1 por el método 2

Nota: la diferencia en los decimales en el resultado de los dos procedimientos se debe al redondeo.

Ejercicio 2

Están jugando en el patio de un colegio, cuando el balón sale al exterior por encima de la valla del campo. Un hombre le da una patada al balón para devolverlo al interior. Sabiendo que el muro del patio tiene 3 m de altura, que el hombre está a 45 m del muro y que patea el balón a 24 m/s con un ángulo de 55°, averiguar si consigue que la pelota vuelva a entrar al patio pasando sobre el muro.

SOLUCIÓN:

En este problema, emplearemos también fórmulas de los dos movimientos componentes del movimiento parabólico: el movimiento rectilíneo uniforme (MRU), que se corresponde con el eje horizontal, y el movimiento rectilíneo uniformemente acelerado (MRUA), que se corresponde con el eje vertical.

En primer lugar, volvemos a descomponer el vector velocidad inicial v0 en sus dos componentes. La componente horizontal de la velocidad será:


Cálculo de la componente horizontal de la velocidad en el ejercicio 2

La componente vertical de la velocidad inicial será:


Cálculo de la componente vertical de la velocidad en el ejercicio 2

Resolveremos el problema aplicando las ecuaciones de los dos movimientos, MRU y MRUA. Como el hombre chuta el balón a 53 m del muro y la componente horizontal de la velocidad es 13,77 m/s, por la ecuación del MRU tendremos:


Cálculo del tiempo en llegar el balón al muro en el ejercicio 2

Que será el tiempo en llegar al balón al muro, ya que éste está a 45 m. Ahora, para ver si lo sobrepasa, aplicamos una fórmula del MRUA:


Cálculo de la altura al impactar el balón en el muro en el ejercicio 2

Recordamos que la aceleración es la de la gravedad g, con signo contrario al de la componente vertical de la velocidad inicial.


Dibujo del ejercicio 2 del movimiento parabólico

La respuesta al ejercicio es que el hombre no ha conseguido meter el balón en el patio, puesto que el muro tiene una altura de 3 m y el balón ha impactado contra él a 2,76 m. Deberá volverlo a intentar, quizás acercándose más al muro.

Ejercicio 3

En una prueba de atletismo de lanzamiento de peso, el atleta logra una marca de 22 m. Sabiendo que la bola sale de su mano a 2 m del suelo y con un ángulo de 45°, averiguar la velocidad inicial del lanzamiento.

SOLUCIÓN:

Para resolver el problema, igualmente emplearemos las fórmulas del movimiento rectilíneo uniforme y del movimiento rectilíneo uniformemente acelerado, que componen,como se ha repetido, el movimiento parabólico. Del movimiento MRU usaremos la fórmula:


Cálculo de la fórmula del MRU en el ejercicio 3

Sabemos que v0 · cos θ es la componente horizontal de la velocidad v0). Despejamos el tiempo y la velocidad:


Cálculo para despejar el tiempo y la velocidad en el ejercicio 3

Ahora, vamos a la fórmula del espacio del movimiento rectilíneo uniformemente acelerado:


Cálculo de la fórmula del MRUA en el ejercicio 3

Sabemos también que sen θ es la componente vertical de la velocidad v0 y que la aceleración es la de la gravedad g con signo negativo, al ser contraria a la velocidad inicial. La altura final será cero, y = 0 m, puesto que la bola impacta en el suelo. La altura inicial será a la que suelta el atleta la bola de la mano, y0 = 2 m). Sustituimos por la expresión de t antes obtenida y ponemos los valores conocidos:


Cálculo del tiempo en un movimiento MRUA en el ejercicio 3

Despejamos de esta ecuación la t, pues tan 45° = 1.


Cálculo del tiempo en el que está en el aire el peso en el ejercicio 3

Volvemos a la expresión anterior de v0.


Cálculo de la velocidad de lanzamiento en el ejercicio 3

Por lo tanto, 14,1 m/s será la velocidad de lanzamiento v0 buscada.


Dibujo del ejercicio 3 del movimiento parabólico

SI TE HA GUSTA, ¡COMPÁRTELO!

¿TE HAN QUEDADO DUDAS? ¡PREGUNTA EN NUESTRO FORO!

Acceso al Foro donde preguntar dudas de Universo Formulas

También te podría gustar...

7 Respuestas

  1. Jorg Perez dice:

    Yo les dejo un ejercicio que resolví con la formula de Alcance horizontal máximo. Un motociclista hizó un salto con una rampa a 40° y alcanzó una velocidad de 40m/s Justo a la salida de la rampa. La altura máxima que alcanzo fue de 33.7 metros.

  2. deisy landinez dice:

    hola: le hizo falta un ejemplo donde se apliquen todas las formulas

  3. Graciela dice:

    muy bueno gracias

  4. Angelita !! dice:

    Gracias !!! esto me es de mucha ayuda !!

  5. elva dice:

    muchas gracias por el TEMA me sirvio de mucho me gustaria con imagenes de proyectiles si es posible

  6. Gaby dice:

    realmente me ha servido muchisimo y es muy completo! gracias por esto! 🙂

  7. xphynx dice:

    muchas gracias por la informacion se los agradesco con esto de las formulas

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *