× NO BLOQUEES a Universo Formulas

¡Hola! Al parecer tienes en el navegador un bloqueador de anuncios (Adblocker, Ablock Plus,...) que impide que se visualicen nuestros anuncios.

Queremos recordarte que este proyecto vive únicamente de la publicidad y que sin estos ingresos no podremos seguir ayudándote.

No te pedimos que desinstales tu bloqueador de anuncios, sólo que no actúe en las páginas de nuestro dominio universoformulas.com y así podremos mostrarte nuestros bloques de anuncios.

¡Gracias por todo y que sigas disfrutando de Universo Formulas!

Este aviso se cerrará automáticamente en 30 segundos.

Volumen de un cilindro

ANUNCIOS

Dibujo del volumen de un cilindro

El volumen de un cilindro se calcula mediante la fórmula:


Fórmula del volumen del cilindro

¿Cómo se obtiene esta fórmula?

Si aplicamos el segundo teorema de Pappus-Guldin el volumen de un sólido de revolución viene dado por:


Cálculo 1 para obtener la fórmula del volumen de un cilindro

El área de la superficie generatriz del cilindro (Sg), que es la del rectángulo, es:


Cálculo 2 para obtener la fórmula del volumen del cilindro

La longitud de la circunferencia directriz es:


Cálculo 3 para obtener la fórmula del volumen del cilindro

Ya que el centroide de un rectángulo se encuentra en su centro, en el punto donde se cruzan las dos diagonales, a una distancia r/2 del lado mayor.

Luego el volumen será:


Cálculo 4 para obtener la fórmula del volumen del cilindro

Obtenida por Pappus Guldin y que, en definitiva, es el área de la base por la altura (que és la misma fórmula del cilindro expuesta antes).

Volumen de un cilindro oblicuo

ANUNCIOS



Dibujo de un cilindro oblicuo de base circular y otro oblicuo de base elíptica

La fórmula del volumen del cilindro oblicuo es la genérica del volumen del cilindro:


Fórmula del volumen del cilindro oblicuo

En el caso del cilindro oblicuo de sección recta circular (la base es elíptica), la fórmula de su volumen será:


Fórmula del volumen del cilindro oblicuo de sección recta circular

Y en el caso del cilindro oblicuo de base circular (en la que su sección recta será una elipse):


Fórmula del volumen del cilindro oblicuo de base circular

Esta última es la misma fórmula que la de un cilindro recto de revolución (principio de Cavalieri).

Ejercicio 1

Hallar el volumen de un cilindro recto de revolución de radio 3 cm y altura 4 cm.

Solución:


Cálculo del ejemplo 1 del área de un cilindro.

Su volumen será de 113,1 cm3.

Ejercicio 2

Hallar el volumen de un cilindro oblicuo cuya sección recta circular tiene un radio de 3 cm y una altura de 6 cm. La recta que une los centros de sus bases (eje E) forma un ángulo con ellas de 60°.

Solución:


Cálculo del ejemplo 1 del área de un cilindro oblícuo.

Y el volumen del cilindro oblicuo será de 195,94 cm3.

Ejercicio 3

Calcular el volumen de un cilindro oblicuo de base circular de radio 1 cm y altura 2 cm.

Solución:


Cálculo del ejemplo 2 del área de un cilindro oblicuo.

Y obtenemos que el volumen del cilindro oblicuo es de 6,28 cm3.

Ejercicio 4

Dibujo del ejemplo 2 del volumen del cilindro.

Una industria tiene un gran depósito de forma cilíndrica. Es de la clase en que su diámetro es igual a su altura útil.

Si actualmente el depósito está a la tercera parte de su capacidad y está almacenando 261.800 litros. ¿Cuál será su radio?

Solución:

Sabemos que 1000 litros de capacidad equivalen a 1 m3, por lo que el volumen del líquido almacenado actualmente en el depósito será de 261,8 m3.

Como está lleno a un tercio, el volumen total será:


Cálculo 1 del ejemplo 2 del volumen de un cilindro.

Ahora, aplicamos la fórmula del volumen del cilindro:


Cálculo 2 del ejemplo 2 del volumen de un cilindro.

Por lo que el radio del depósito cilíndrico es 5 m.

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *