× NO BLOQUEES a Universo Formulas

¡Hola! Al parecer tienes en el navegador un bloqueador de anuncios (Adblocker, Ablock Plus,...) que impide que se visualicen nuestros anuncios.

Queremos recordarte que este proyecto vive únicamente de la publicidad y que sin estos ingresos no podremos seguir ayudándote.

No te pedimos que desinstales tu bloqueador de anuncios, sólo que no actúe en las páginas de nuestro dominio universoformulas.com y así podremos mostrarte nuestros bloques de anuncios.

¡Gracias por todo y que sigas disfrutando de Universo Formulas!

Este aviso se cerrará automáticamente en 30 segundos.

Función creciente

ANUNCIOS

Una función creciente f es una función tal que al aumentar la variable independiente x, aumenta la variable dependiente y.


Dibujo de una función creciente.

Es decir, la función f es creciente si para cualquier par de puntos x1 y x2 del dominio tales que x1<x2, se cumple que f(x1) ≤ f(x2).


Dibujo de una función creciente entre dos puntos.

También se puede estudiar el crecimiento a partir de la derivada. Una función f es creciente si para todo punto x del dominio la derivada es positiva, es decir f ’(x) ≥ 0.

La función es estrictamente creciente en todo su dominio si para cualquier par de puntos x1 y x2 tales que x1<x2, se cumple que f(x1) < f(x2).

Función creciente en un intervalo

ANUNCIOS


Sean a y b dos elementos del dominio, tales que a < b y formando el intervalo [a,b].

Una función es creciente entre a y b si para cualquier par de puntos x1 y x2 del intervalo tales que x1<x2, se cumple que f(x1) < f(x2). Es decir, es creciente en [a,b] si al aumentar la variable independiente x, aumenta la variable dependiente y.


Dibujo de una función creciente en un intervalo.

Ejemplo de crecimiento en un intervalo

Función creciente en un punto

Sea una función f derivable en el punto a.

La función f es creciente en a si f ’(a) > 0. Es decir, es creciente en a si la derivada es positiva.


Dibujo de una función creciente en el punto a.

Ejemplo de crecimiento en un punto

Intervalos de crecimiento y decrecimiento

Los intervalos de crecimiento y decrecimiento explican los trozos del dominio en los que la función crece o decrece.

Para hallar los intervalos de crecimiento y decrecimiento se realizará el siguiente procedimiento.

  1. Derivar la función, obteniendo f ’(x).
  2. Hallar las raíces de la derivada, es decir, los x tales que la derivada sea 0.


    Fórmula de las raíces de la derivada.

  3. Crear intervalos abiertos con extremos las raíces de f ’.

    Por ejemplo, si una función está definida en todos los números reales (es decir, en ]-∞,+∞[) y tiene como raíces el 1 y el 3, entonces los intervalos a estudiar serían  ]-∞,1[ ,  ]1,3[  y  ]3,+∞[ .

  4. Estudiar el signo que toma la derivada en un valor interior de cada intervalo, de manera que:


    Fórmula del crecimiento o decrecimiento según el signo de la derivada.

    Por ejemplo, si f ’(2)< 0, que es un punto interior de ]1,3[, entonces la función es decreciente en dicho intervalo.

  5. A partir del paso anterior, obtenemos todos los intervalos de crecimiento y decrecimiento.

Ejemplo de intervalos de crecimiento y decrecimiento

Sea la función f definida en los número reales (intervalo  ]-∞,+∞[ ):


Fórmula de un ejemplo de función para estudiar los intervalos de crecimiento y decrecimiento.

Vamos a estudiar los intervalos de crecimiento y decrecimiento que tiene.


Ejemplo de gráfica de una función para estudiar los intervalos de crecimiento y decrecimiento.

  1. Derivamos la función, obteniendo f ’(x).


    Derivada de un ejemplo de función para estudiar los intervalos de crecimiento y decrecimiento.

  2. Hallamos las raíces de la derivada:


    Cálculo de las raíces de la derivada de un ejemplo de función.

  3. Los intervalos abiertos con extremos las raíces de f ’ serán:


    Intervalos de crecimiento y decrecimiento del ejemplo de función.

  4. Estudiamos el signo que toma la derivada en los valores interiores de cada intervalo, por ejemplo en el -1, el 1 y el 3:


    Signo de la derivada en los diferentes intervales para estudiar el crecimiento o decrecimiento.

  5. Hallamos que:
    • f es creciente en  ]-∞,0[  y en  ]2,+∞[ .
    • f es decreciente en  ]0,2[ .

Ejemplo de función creciente en un intervalo

Estudiar y demostrar que la función f(x)=x2 es creciente en el intervalo [1,3].


Dibujo de un ejemplo de función para estudiar el crecimiento y decrecimiento en un intervalo.

En el intervalo [1,3], los extremos son a=1 y b=3. Vamos a ver en los puntos x1=1,5 y x2=2,5.


Cálculo del crecimiento y decrecimiento de la función en el intervalo [1,3].

En el valor 1,5 la función f es menor que en el 2,5, y así pasaría para todo par de puntos del intervalo x1 y x2. Por lo tanto la función es creciente en el intervalo [1,3].

Ejemplo de función creciente en un punto

Demostrar que la función f(x)=x3-5x2+5x+4 es creciente en 0 y 3.


Dibujo de un ejemplo de función para estudiar el crecimiento y decrecimiento en un punto.

Primero calcularemos la derivada de f:


Derivada de una función para estudiar el crecimiento y decrecimiento en un punto.

  • Veamos en el punto x=0.


    Cálculo de la derivada en el punto 0 para estudiar el crecimiento y decrecimiento.

    La derivada da f ’(0)=5 ≥ 0, por lo que f es creciente en 0.

  • Finalmente estudiaremos el punto x=3.


    Cálculo de la derivada en el punto 3 para estudiar el crecimiento y decrecimiento.

    La derivada da f ’(3)=2 ≥ 0, por lo que f es creciente en 3.

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *